Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting information

Methanol formation by catalytic hydrogenation of CO2 on nitrogen doped zinc oxide surface: An evaluative study on the mechanistic pathway by density functional theory

Ramasamy Shanmugam, †,‡ Arunachalam Thamaraichelvan, † and

BalasubramanianViswanathan,*,[‡]

[†]Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu 6250 09, India

[‡]National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai,

Tamilnadu 600 036, India

*E-mail: bvnathan@iitm.ac.in

Supporting information-1

The binding energies of CO_2 on $Zn_{18}O_{18}$ were calculated and shown in **Table 1.** The difference of -0.80 eV was observed between pure and nitrogen doped surface indicates the presence of N favors more adsorption than the pure state.

Table 1

	Zn ₁₈ O ₁₇ :N	Zn ₁₈ O ₁₈
Binding energy	-1.86 eV	-1.06 eV

Figure 1. ADMP molecular dynamics profile of (a) carbamate, (b) dissociative adsorbed H_2O and (c) coadsorbed CO_2 & H_2O species on nitrogen doped zinc oxide clusters.