Electronic Supplementary Information

One-pot synthesis and assembly of melamine-based nanoparticles for microporous polymer organic frameworks and its application as a support for silver nanoparticles catalyst

Xiaolong Zhao,*^a Na Yan^b

Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou, P. R. China 730070.

*To whom correspondence should be addressed. Email: zhaox182@nwnu.edu.cn

Table of Contents

1.	Tables ······2
	Table S12
	Table S2······3
	Table S34
2.	Figures5
	Figure S1 ······5
	Figure S2 ······6
	Figure S3 ·····7
	Figure S4 ·····8
	Figure S5 ·····9
	Figure S6 ·····10
	Figure S7 ·····11
	Figure S8
	Figure S9
	Figure S10
	Figure S11
	Figure S12
	Figure S1317
	Figure S14

1. Tables

Table S1

Samples	Molar ratio ^a	Yield (%)
POF-MT ₃	1:3	33
POF-M ₂ T ₃	2:3	72
POF-M ₃ T ₃	3:3	73
POF-M ₄ T ₃	4:3	67
POF-M ₅ T ₃	5:3	66
POF-MI ₃	1:3	35
POF-M ₂ I ₃	2:3	71
POF-M ₃ I ₃	3:3	73
POF-M ₄ I ₃	4:3	65
POF-M ₅ I ₃	5:3	66

Yields of the melamined-based POFs.

^aMolar ratio of melamine (M) to terephthalaldehyde (T) or isophthalaldehyde (I).

Table S2

Samples	Molar ratio ^a	C (%)	Н (%)	N (%)
POF-M ₂ T ₃	2:3	37.18	4.62	39.78
POF-M ₄ T ₃	4:3	36.07	4.56	40.33
POF-M ₂ I ₃	2:3	35.97	4.58	39.14
POF-M ₄ I ₃	4:3	34.46	4.88	42.19

Chemical elemental analysis of the melamined-based POFs.

^{*a*}Molar ratio of melamine (M) to terephthalaldehyde (T) or isophthalaldehyde (I).

Table S3

20	38.1	44.4	64.6	77.2
(hkl) ^a	111	200	220	311
calcd d_{hkl}^{b}	0.2366	0.2040	0.1444	0.1232
d_{hkl}^{c}	0.2359	0.2043	0.1445	0.1231
$D (\mathrm{nm})^d$	5.9	7.4	9.3	10.1

The XRD data of POF- $M_2T_3/AgNPs$ composites.

^{*a*}Cubic crystal lattice planes of AgNPs. ^{*b*}Calculated d-spacing (inter planar spacing in Å) of silver particles (λ =2dsin θ) present inside silica fibers. ^{*c*}International Centre for Diffraction Data obtained for silver from JCPDS files (No. 41-1402). ^{*d*}The particle size of AgNPs calculated from the Bragg's and Sherrer's equations.

2. Figures

Fig. S1. UV-Vis spectra (DMSO as the reference) of melamine, terephthalaldehyde and POF- M_2T_3 with the reaction time of 2 h.

Fig. S2. Fluorescence excitation and emission spectra of melamine,

terephthalaldehyde and POF-M₂T₃ with the reaction time of 2 h. Insets show the images of POF-M₂T₃ solution under natural (a) and ultraviolet (λ_{ex} =365 nm, b) light.

Fig. S3. FTIR spectra of the melamine-based POFs prepared with different M/T ratios. (a) 1:3, (b) 2:3, (c) 3:3, (d) 4:3, (e) 5:3.

Fig. S4. FTIR spectra of the melamine-based POFs prepared with different M/I ratios. (a) 1:3, (b) 2:3, (c) 3:3, (d) 4:3, (e) 5:3.

Fig. S5. Rotating 3D structure model for POF- M_2T_3 (Numbers at upper left are angles

of rotation).

Fig. S6. Rotating 3D structure model for POF- M_2I_3 (Numbers at upper left are angles

of rotation).

Fig. S7. FTIR spectra of melamine (a), terephthalaldehyde (b) and POF- M_2T_3 (c).

Fig. S8. FTIR spectra of melamine (a), isophthalaldehyde (b) and POF- M_2I_3 (c).

Fig. S9. SEM image of POF- M_4T_3 .

Fig. S10. SEM image of POF- M_4I_3 .

Fig. S11. Nitrogen adsorption and desorption isotherm of POF- M_4T_3 .

Fig. S12. Nitrogen adsorption and desorption isotherm of POF-M₄I₃.

Fig. S13. Thermogravimetric analysis of POF- M_2T_3 (black), POF- M_4T_3 (red), POF- M_2I_3 (blue) and POF- M_4I_3 (green).

Fig. S14. Successive UV-vis absorption spectra of the reduction of methylene blue by NaBH₄ using recycled POF-M₂T₃/AgNPs composites as catalyst (after 20 min). The same batch of POF-M₂T₃/AgNPs composites were used for 7 times, and in each cycle, the POF-M₂T₃/AgNPs composites were directly used after a simple centrifugation and washing with distilled water.