The datas of the title compounds

4-isopropylcyclohexa-1, 3-dienecarboxylic acid (3, C₁₀H₁₆O₃)

IR (cm⁻¹): 3415 (O–H); 2961, 2874 (–CH₃, –CH₂); 1700 (–C=O). ¹H NMR(CDCl₃, δ /ppm, 300 MHz): 6.94 (d, 1H, O=C–C=CH–); 5.90 (d, 1H, –CH=C–(Me)₂); 2.46 (m, H, –CH–(Me)₂); 2.51 (t, 2H, –CH₂–C–C=O); 2.27 (t, 2H, –CH₂–C–C=C); 1.10 (d, 6H, –CH₃). TOF-ESI-MS (m/z): 167 [M + H]⁺. Anal. calcd for C₁₀H₁₄O₂: C, 72.29; H, 11.67. Found: C, 73.11; H, 10.99.

4-isopropyl-N-phenyl cyclohexa-1, 3-dienecarboxamide (5a, C₁₆H₁₉NO)

IR (cm⁻¹): 3312 (N–H); 2957, 2870 (–CH₃, –CH₂); 1653, 1630 (–C=O). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.57 (s, 1H, CONH–); 7.07-7.55 (m, 5H, Ar–H); 6.76-6.78 (d, 1H, OC–C=CH–); 5.83-5.85 (d, 1H, –CH=C–(Me)₂); 2.85-3.03 (m, 1H, –CH–(Me)₂); 2.49-256 (t, 2H, –CH₂–C–CO); 2.23-2.29 (t, 2H, –CH₂–C–C=C); 1.04-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 242 [M+H] ⁺; 264 [M+Na] ⁺. Anal. calcd for C₁₆H₁₉NO: C, 79.67; H, 7.88; N, 5.81. Found: C, 80.15; H, 7.42; N, 5.99.

4-isopropyl-N-(o-methylphenyl) cyclohexa-1, 3-dienecarboxamide (5b, C₁₇H₂₁NO)

IR (cm⁻¹): 3248 (NH); 2963, 2858 (CH); 1650 (N–C=O). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.95 (s, 1H, CONH–); 7.02-7.43 (m, 4H, Ar–H); 6.80-6.91 (d, 1H, OC–C=CH–); 5.82-5.86 (d, 1H, –CH=C–(Me)₂); 2.40-2.54 (m, 1H, –CH–(Me)₂); 2.34-2.37 (t, 2H, –CH₂–C–CO); 2.50-2.29 (t, 2H, –CH₂–C–C=C); 2.19 (s, 3H, Ar–CH₃); 1.03-1.56 (d, 6H, –CH₃). TOF-ESI-MS (m/z): 256 [M+H]⁺; 278 [M+Na]⁺. Anal. calcd for C17H21NO: C, 80.00; H, 8.24; N, 5.49. Found: C, 80.12; H, 8.34; N, 5.23.

4-isopropyl-N-(m-methylphenyl) cyclohexa-1, 3-dienecarboxamide (5c, C₁₇H₂₁NO).

IR (cm⁻¹): 3302 (NH); 2959, 2870 (CH); 1650, 1653 (N–C=O). ¹H NMR (CDCl₃, δ/ppm, 300

MHz): 7.44 (s, 1H, CONH–); 7.18-7.40 (m, 4H, Ar–H); 6.91-6.93 (d, 1H, OC–C=CH–); 5.83-5.84 (d, 1H, –CH=C–(Me)₂); 2.85-3.02 (m, 1H, –CH–(Me)₂); 2.49-2.55 (t, 2H, –CH₂–C–CO); 2.23-2.29 (t, 2H, –CH₂–C–C=C); 2.35 (s, 3H, Ar–CH₃), 1.04-1.10 (d, 6H, –CH₃). TOF-ESI-MS (m/z): 256 [M+H]⁺, 278 [M+Na]⁺. Anal. calcd for C17H21NO: C, 80.00; H, 8.24; N, 5.49. Found: C, 80.25; H, 8.35; N, 5.37.

4-isopropyl-N-(p-methylphenyl) cyclohexa-1, 3-dienecarboxamide (5d, C₁₇H₂₁NO)

IR (cm⁻¹): 3315 (NH); 2963, 2870 (CH); 1650, 1635 (N–C=O). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.78 (s, 1H, CONH–); 7.18-7.40 (m, 4H, Ar–H); 6.72-6.80 (d, 1H, OC–C=CH–); 5.82-5.86 (d, 1H, –CH=C–(Me)₂); 2.84-3.03 (m, 1H, –CH–(Me)₂); 2.49-2.55 (t, 2H, –CH₂–C–CO); 2.23-2.28 (t, 2H, –CH₂–C–C=C); 2.32 (s, 3H, Ar–CH₃); 1.03-1.10 (d, 6H, –CH₃).

TOF-ESI-MS (m/z): 256 [M+H]⁺; 278 [M+Na]⁺. Anal. calcd for C17H21NO: C, 80.00; H, 8.24; N, 5.49. Found: C, 80.13; H, 8.06; N, 5.45.

4-isopropyl-N-(2, 4-dimethylphenyl) cyclohexa-1, 3-dienecarboxamide (5e, C₁₈H₂₃NO)

IR (cm⁻¹): 3256 (NH); 2960, 2856 (CH); 1643 (N–C=O). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.74 (s, 1H, CONH–); 6.97-7.34 (m, 3H, Ar–H); 6.78-6.82 (d, 1H, OC–C=CH–); 5.81-5.86 (d, 1H, –CH=C–(Me)₂); 2.36-2.44 (m, 1H, –CH–(Me)₂); 2.28 (s, 3H, Ar–CH₃); 2.15 (s, 3H, Ar– CH₃); 1.83 (t, 2H, –CH₂–C–CO); 1.75 (t, 2H, –CH₂–C–C=C); 1.03-1.5 (d, 6H, –CH₃). TOF-ESI-MS (m/z): 270 [M+H] ⁺; 292 [M+Na] ⁺. Anal. calcd for C18H23NO: C, 80.30; H, 8.55; N, 5.20. Found: C, 80.63; H, 8.19; N, 5.57.

4-isopropyl-N-(3, 5-dimethylphenyl) cyclohexa-1, 3-dienecarboxamide (5f, C₁₈H₂₃NO)

IR (cm⁻¹): 3285 (NH); 2960, 2870 (-CH₃, -CH₂); 1651, 1626 (N-C=O). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.78 (s, 1H, CONH-); 7.20-7.35 (m, 3H, Ar-H); 6.71-6.75 (d, 1H, OC-C=CH-);

5.83-5.85 (d, 1H, -CH=C-(Me)₂); 2.85-2.87 (m, 1H, -CH-(Me)₂); 2.48-2.54 (t, 2H, -CH₂-C-CO); 2.52-2.33 (t, 2H, -CH₂-C-C=C); 2.35 (s, 6H, Ar-CH₃), 1.03-1.10 (d, 6H, -CH₃). TOF-ESI-MS (m/z): 270 [M+H] ⁺; 292 [M+Na] ⁺. Anal. calcd for C18H23NO: C, 80.30; H, 8.55; N, 5.20. Found: C, 80.57; H, 8.23; N, 5.38.

1-(4-isopropylcyclohexa-1, 3-dienecarbonyl)-3-phenylthiourea (7a, C₁₇H₂₀N₂OS)

IR (cm⁻¹): 3415, 3250 (N–H); 3038 (Ar–C–H); 1658 (C=O); 1162 (C=S). ¹H NMR(CDCl₃, δ /ppm, 300 MHz): 7.83 (s, 1H, CSNH–); 7.26 (s, 1H, CONH–); 7.37-7.43 (m, 5H, Ar–H); 6.93-6.94 (d, 1H, OC–C=CH–); 5.89-5.90 (d, 1H, –CH=C–(Me)₂); 2.41-2.46 (m, H, –CH–(Me)₂); 2.47-2.51 (t, 2H, –CH₂–C–CO); 2.31-2.27 (t, 2H, –CH₂–C–C=C); 1.09-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 301[M+H]⁺; 323[M+Na]⁺. Anal. calcd for C₁₇H₁₉NOS: C, 68.00; H, 6.67; N, 9.33; S, 10.67. Found: C, 67.78; H, 6.50; N, 8.97; S, 10.01.

1-benzyl-3-(4-isopropylcyclohexa-1,3-dienecarbonyl)thiourea (7b, C₁₈H₂₂N₂OS)

IR (cm⁻¹): 3461 (N–H); 3039 (Ar–C–H); 1659 (C=O); 1163 (C=S). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.74-7.77 (t, 1H, CSNH–); 7.33 (s, 1H, CONH–); 7.24-7.40 (m, 5H, Ar–H); 6.85-6.86 (d, 1H, OC–C=CH–); 5.84-5.86 (d, 1H, –CH=C–(Me)₂); 2.35-2.40 (m, H, –CH–(Me)₂); 2.42-2.45 (t, 2H, –CH₂–C–CO); 2.20-2.26 (t, 2H, –CH₂–C–C=C); 1.06-1.08 (d, 6H, CH₃). TOF-ESI-MS (m/z): 313[M-H]⁻. Anal. calcd for C₁₈H₂₂N₂OS: C, 68.79; H, 7.01; N, 8.92; S, 10.19. Found: C, 68.33; H, 7.04; N, 8.47; S, 9.87.

1-(4-isopropylcyclohexa-1,3-dienecarbonyl)-3-o-tolylthiourea (7c, C₁₈H₂₂N₂OS)

IR (cm⁻¹): 3420 and 3209 (N–H); 2957 and 2870 (–CH₂, –CH₃); 1653 and 1630 (–C=O); 1161(–C=S). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.84 (s, 1H, S=C–N–H); 7.25 (s,1H, O=C–N– H);7.20-7.29 (m, 4H, Ar–H); 6.93, 6.95 (d, 1H, OC–C=CH–); 5.89, 5.90 (d, 1H, –CH=C–(Me)₂); 2.41-2.45 (m, H, –CH–(Me)₂); 2.48-2.51 (t, 2H, –CH₂–C–CO); 2.27-2.31 (t, 2H, -CH₂-C–C=C); 2.33 (s, 3H, CH₃-Ar); 1.06-1.08 (d, 6H, CH₃). TOF-ESI-MS (m/z): 315 [M + H]⁺; 337 [M + Na]⁺. Anal. calcd for C₁₈H₂₂N₂OS: C, 68.79; H, 7.01; N, 8.92; S, 10.19. Found: C, 68.47; H, 7.11; N, 8.78; S, 9.89.

1-(4-isopropylcyclohexa-1, 3-dienecarbonyl)-3-m-tolylthiourea (7d, C₁₈H₂₂N₂OS)

IR (cm⁻¹): 3423 and 3210 (N–H); 2957 and 2870 (–CH₂, –CH₃); 1665 (–C=O); 1145(–C=S). ¹H NMR (CDCl₃, δ /ppm, 300 MHz): 7.82 (s, 1H, S=C–N–H); 7.43 (s,1H, O=C–N–H);7.25-7.52 (m, 4H, Ar–H); 6.93, 6.95 (d, 1H, OC–C=CH–); 5.87, 5.89 (d, 1H, –CH=C–(Me)₂); 2.31-2.45 (m, H, –CH–(Me)₂); 2.45-2.50 (t, 2H, –CH₂–C–CO); 2.23-2.30 (t, 2H, –CH₂-C-C=C); 2.36 (s, 3H, CH₃-Ar); 1.07-1.09 (d, 6H, CH₃). TOF-ESI-MS (m/z): 315 [M + H]⁺; 337 [M + Na]⁺. Anal. calcd for C₁₈H₂₂N₂OS: C, 68.79; H, 7.01; N, 8.92; S, 10.19. Found: C, 68.57; H, 7.06; N, 8.65; S, 9.81.

1-(4-isopropylcyclohexa-1, 3-dienecarbonyl)-3-p-tolylthiourea (7e, C₁₈H₂₂N₂OS)

IR (cm⁻¹): 3415, 3203 (N–H); 3030 (Ar–C–H); 1666 (C=O); 1162 (C=S). ¹H NMR (CDCl₃, δ /ppm, 300 MHz): 7.58 (s, 1H, CSNH–); 7.26 (s, 1H, CONH–); 7.18-7.22 (m, 4H, Ar–H); 6.93-6.94 (d, 1H, OC–C=CH–); 5.88-5.89 (d, 1H, –CH=C–(Me)₂); 2.41-2.44 (m, H, –CH–(Me)₂); 2.46-2.50 (t, 2H, –CH₂–C–CO); 2.26-2.30 (t, 2H, –CH₂–C–C=C); 2.35 (s, 3H, CH₃–Ar); 1.08-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 315 [M+H]⁺; 337[M+Na]⁺. Anal. calcd for C₁₈H₂₂N₂OS: C, 68.79; H, 7.01; N, 8.92; S, 10.19. Found: C, 69.34; H, 7.06; N, 9.05; S, 9.78.

1-(2,4-dimethylphenyl)-3-(4-isopropylcyclohexa-1,3-dienecarbonyl)thiourea(7f, C₁₉H₂₄N₂OS) IR (cm⁻¹): 3416, 3198 (N–H); 3030 (Ar–C–H); 1662 (C=O), 1151 (C=S). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.57 (s, 1H, CSNH–); 7.26 (s, 1H, CONH–), 7.04-7.09 (m, 3H, Ar–H); 6.95-6.96 (d, 1H, OC–C=CH–); 5.89-5.90 (d, 1H, –CH=C–(Me)₂); 2.40-2.44 (m, H, –CH–(Me)₂); 2.47-2.51 (t, 2H, -CH₂-C-CO); 2.30-2.34 (t, 2H, -CH₂-C-C=C); 2.32 (s, 3H, 2-CH₃-Ar); 2.27 (s, 3H, 4-CH₃-Ar); 1.09-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 329[M+H]⁺; 351 [M+Na]⁺. Anal. calcd for C₁₉H₂₄N₂OS: C, 69.51; H, 7.32; N, 8.54; S, 9.76. Found: C, 69.55; H, 7.14; N, 8.62; S, 9.30.

1-(funan-2-yl) ethanone oximyl 4-isopropylcyclohexa-1,3-dienecarboxylate (8a, C₁₆H₁₉NO₃)

IR (cm⁻¹): 1729 (-O-C=O); 1606 (C=N). ¹H NMR (CDCl₃, δ /ppm, 300 MHz): 7.54, 7.57 (d, 1H, furan- α -C-H); 7.14,7.13 (d, 1H, OC-C=CH-); 6.93-6.94 (d, 2H, furan- β -C-H); 5.89, 5.90 (d, 1H, -CH=C-(Me)₂); 2.89-2.91 (m, H, -CH-(Me)₂); 2.52-2.58 (t, 2H, -CH₂-C-CO); 2.35 (s, 3H, -N=C-CH₃); 2.22-2.29 (t, 2H, -CH₂-C-C=C); 1.07-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 295 [M+Na]⁺. Anal. calcd for C₁₆H₁₉NO₃: C, 70.33; H, 6.96; N, 5.13. Found: C, 70.21; H, 7.03; N, 5.18.

1-(thiophene-2-yl) ethanone oximyl 4-isopropylcyclohexa-1,3-dienecarboxylate (8b, C₁₆H₁₉NO₂S)

IR (cm⁻¹): 1738 (-C=O); 1584 (-C=S). ¹H NMR (CDCl₃, δ /ppm, 300 MHz): 8.05, 8.03 (d, 1H, thiophene– α –C–H); 7.49, 7.50 (d, 2H, thiophene– β –C–H); 7.09, 7.11 (d, 1H, OC–C=CH–); 5.87, 5.89 (d, 1H, –CH=C–(Me)₂); 2.50-2.59 (m, H, –CH–(Me)₂); 2.40-2.43 (t, 2H, –CH₂–C–CO); 2.31 (s, 3H, –N=C–CH₃); 2.23-2.24 (t, 2H, –CH₂–C–C=C); 1.06-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 289 [M + H]⁺. Anal. calcd for C₁₆H₁₉NO₂S: C, 66.44; H, 6.57; N, 9.69. Found: C, 66.88; H, 6.34; N, 9.48.

1-(4-chlorophenyl) ethanone oximyl 4-isopropylcyclohexa-1, 3-dienecarboxylate (8c, C₁₈H₂₀ClNO₂) IR (cm⁻¹): 1734 (-O-C=O); 1592 (C=N). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.70, 7.72 (d, 2H, *o*-C-H); 7.33-7.36 (d, 2H, *m*-C-H); 7.13, 7.14 (d, 1H, OC-C=CH-); 5.91, 5.92 (d, 1H, -CH=C-(Me)₂); 2.53-2.55 (m, H, -CH-(Me)₂); 2.40-2.41 (t, 2H, -CH₂-C-CO); 2.30 (s, 3H, -N=C-CH₃); 2.20-2.23 (t, 2H, -CH₂-C-C=C); 1.04-1.08 (d, 6H, CH₃). TOF-ESI-MS (m/z): 317 [M+H]⁺. Anal. calcd for C₁₈H₂₀ClNO₂: C, 68.03; H, 6.30; N: 4.41. Found: C, 67.86; H, 6.31; N, 4.51.

1-(*p*-tolyl) ethanone oximyl 4-isopropylcyclohexa-1, 3-dienecarboxylate (8d, C₁₉H₂₃NO₂)

IR (cm⁻¹): 1734 (-O-C=O); 1592 (C=N). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.64, 7.79 (d, 2H, *o*-C-H), 7.51, 7.54 (d, 2H, *m*-C-H); 7.12, 7.17 (d, 1H, OC-C=CH-), 5.87, 5.88 (d, 1H, -CH=C-(Me)₂); 2.50-2.58 (m, H, -CH-(Me)₂); 2.40-2.41 (t, 2H, -CH₂-C-CO); 2.21-2.23 (t, 2H, -CH₂-C-C=C); 2.27 (s, 3H, Ar-H); 1.80 (s, 3H, -N=C-CH₃); 1.04-1.08 (d, 6H, CH₃). TOF-ESI-MS (m/z): 297 [M+H] ⁺. Anal. calcd for C₁₉H₂₃NO₂: C, 76.77; H, 7.74; N, 4.71. Found: C, 75.86; H, 8.15; N, 5.21.

Dicyclohexylmethanone oximyl 4-isopropylcyclohexa-1, 3-dienecarboxylate (8e, C₂₃H₃₅NO₂) IR (cm⁻¹): 1735 (-O-C=O); 1608 (C=N). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.04, 7.05 (d, 1H, OC-C=CH-); 5.83, 5.85 (d, 1H, -CH=C-(Me)₂); 2.51-2.57 (m, H, -CH-(Me)₂); 2.35-2.40 (t, 2H, -CH₂-C-CO); 2.20-2.26 (t, 2H, -CH₂-C-C=C); 1.66-1.78 (m, 10H, cyclehexyl-C-H); 1.02-1.06 (d, 6H, CH₃). TOF-ESI-MS (m/z): 261[M+H] ⁺. Anal. calcd for C₂₃H₃₅NO₂: C, 77.31; H, 9.80; N, 3.92. Found: C, 77.65; H, 9.63; N, 3.35.

Picolinaldehyde oximyl 4-isopropylcyclohexa-1,3-dienecarboxylate (8f, C₁₆H₁₈N₂O₂)

IR (cm⁻¹): 1728 (-O-C=O); 1646 (C=N). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 8.66-8.68 (d, 1H, pyridine–α–C–H); 7.75-7.80 (m, 1H, pyridine–γ–C–H); 7.35-7.37 (m, 2H, pyridine–β–C–H); 7.18, 7.20 (d, 1H, OC–C=CH–), 5.83, 5.85 (d, 1H, –CH=C–(Me)₂); 2.89 (s, 1H, –N=C–H);

2.40-2.45 (m, H, –CH–(Me)₂); 2.40-2.41 (t, 2H, –CH₂–C–CO); 2.20-2.23 (t, 2H, –CH₂–C–C=C); 1.04-1.08 (d, 6H, CH₃). TOF-ESI-MS (m/z): 270[M+H] ⁺. Anal. calcd for C₁₆H₁₈N₂O₂: C, 71.11; H, 6.67; N, 10.37. Found: C, 71.22; H, 6.87; N, 10.58.

Propan-2-one oximyl 4-isopropylcyclohexa-1, 3-dienecarboxylate (8g, C13H19NO2)

IR (cm⁻¹): 1735 (-O-C=O); 1643 (C=N). ¹H NMR (CDCl₃, δ /ppm, 300 MHz): 7.04, 7.06 (d, 1H, OC-C=CH-); 5.83, 5.85 (d, 1H, -CH=C-(Me)₂); 2.42-2.54 (m, H, -CH-(Me)₂); 2.39-2.41 (t, 2H, -CH₂-C-CO); 2.20-2.26 (t, 2H, -CH₂-C-C=C); 2.00 (s, 6H, -N=C-(Me)₂); 1.02-1.06 (d, 6H, CH₃). TOF-ESI-MS (m/z): 221[M+H] ⁺. Anal. calcd for C₁₃H₁₉NO₂: C, 70.59; H, 8.60; N, 6.33. Found: C, 71.11; H, 8.68; N, 5.73.

Butan-2-one oximyl 4-isopropylcyclohexa-1, 3-dienecarboxylate (8h, C₁₄H₂₁NO₂)

IR (cm⁻¹): 1729 (-O-C=O); 1643 (C=N). ¹H NMR (CDCl₃, δ /ppm, 300 MHz): 7.04, 7.07 (d, 1H, OC-C=CH-); 5.84, 5.86 (d, 1H, -CH=C-(Me)₂); 2.57-2.60 (m, H, -CH-(Me)₂); 2.39-2.41 (t, 2H, -CH₂-C-CO); 2.15-2.17 (t, 2H, -CH₂-C-C=C); 2.00 (s, 3H, -N=C-CH₃); 1.37-1.41 (m, 2H, -N=C-CH₂-); 1.03-1.05 (d, 6H, CH₃); 0.90-1.00 (t, 3H, -CH₂-CH₃). TOF-ESI-MS (m/z): 236[M+H]⁺; 258[M+Na]⁺. Anal. calcd for C₁₄H₂₁NO₂: C, 71.49; H, 8.94; N, 5.96. Found: C, 70.79; H, 9.00; N, 6.60.

E)-benzaldehyde oximyl 4-isopropylcyclohexa-1,3-dienecarboxylate (8i, C₁₇H₁₉NO₂)

IR (cm⁻¹): 3395 (H–C=N); 1725 (–O–C=O); 1646 (C=N). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 8.43 (s, 1H, –N=CH); 7.76, 7.78 (d, 2H, *o*–C–H); 7.33, 7.43 (m, 3H, *m*, *p*–C–H); 7.15, 7.16 (d, 1H, OC–C=CH–); 5.84, 5.85 (d, 1H, –CH=C–(Me)₂); 2.52-2.58 (m, H, –CH–(Me)₂); 2.40-2.41 (t, 2H, –CH₂–C–CO); 2.21-2.29 (t, 2H, –CH₂–C–C=C); 1.04-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 269[M+H]⁺. Anal. calcd for C₁₇H₁₉NO₂: C, 76.12; H, 7.06; N, 5.20. Found: C, 75.92; H, 7.16; N, 5.30.

Acetophenone oximyl 4-isopropylcyclohexa-1, 3-dienecarboxylate (8j, C₁₈H₂₁NO₂)

IR (cm⁻¹): 1727 (-O-C=O); 1641 (C=N). ¹H NMR (CDCl₃, δ/ppm, 300 MHz): 7.77, 7.79 (d, 2H, *o*-C-H); 7.37-7.42 (m, 3H, *m*, *p*-C-H); 7.14, 7.17 (d, 1H, OC-C=CH-); 5.83, 5.85 (d, 1H, -CH=C-(Me)₂); 2.52-2.57 (m, H, -CH-(Me)₂); 2.40-2.42 (t, 2H, -CH₂-C-CO); 2.21-2.23 (t, 2H, -CH₂-C-C=C); 2.30 (s, 3H, -N=C-CH₃); 1.04-1.10 (d, 6H, CH₃). TOF-ESI-MS (m/z): 283[M+H]⁺. Anal. calcd for C₁₈H₂₁NO₂: C, 76.33; H, 7.42; N, 4.95. Found: C, 76.35; H, 7.57; N, 4.78.

The representative calculations/plots

		Fungicidal activity (%) at a concentration of $(\mu g/mL)$								
NO.	Compd.	256	128	64	32	16	IC ₅₀	y=ax+b	R^2	log IC ₅₀
1	3	100	67	40	20	0	92.712	y = 0.236 x - 2.722	0.977	1.967
2	5a	100	70	53	31	24	69.777	y = 0.175 x - 1.445	0.952	1.844
3	5b	100	70	50	30	23	72.485	y = 0.177 x - 1.528	0.971	1.860
4	5c	100	72	53	30	25	68.481	y = 0.177 x - 1.456	0.964	1.836
5	5d	100	70	50	30	23	72.485	y = 0.177 x - 1.528	0.971	1.860
6	5e	100	70	48	30	24	73.144	y = 0.177 x - 1.525	0.986	1.864
7	5f	100	72	54	33	25	66.345	y = 0.174 x - 1.382	0.961	1.822
8	7 a	100	98	89	76	58	3.017	y = 0.235x - 0.102	0.990	0.480
9	7b	100	98	89	77	58	2.439	y = 0.236 x - 0.083	0.987	0.387
10	7c	100	97	87	73	57	3.284	y = 0.221 x - 0.099	0.990	0.516
11	7 d	100	98	89	78	58	1.857	y = 0.237 x - 0.063	0.983	0.269
12	7e	100	97	87	73	57	3.284	y = 0.221 x - 0.099	0.990	0.516
13	7f	100	97	86	72	57	3.770	y = 0.218 x - 0.112	0.994	0.576
14	8a	100	95	75	53	33	32.604	y = 0.206 x - 1.089	0.991	1.513
15	8b	100	95	76	55	33	31.371	y = 0.207 x - 1.051	0.985	1.497
16	8c	100	95	80	61	33	27.470	y = 0.211 x - 0.948	0.957	1.439
17	8d	100	95	76	57	33	30.444	y = 0.206 x - 1.011	0.980	1.484
18	8e	100	93	70	50	30	36.840	y = 0.200 x - 1.155	0.984	1.567
19	8f	100	95	75	54	33	32.146	y = 0.206 x - 1.069	0.989	1.507
20	8g	100	95	74	52	32	33.902	y = 0.207 x - 1.138	0.992	1.530
21	8h	100	94	72	51	32	35.174	y = 0.201 x - 1.114	0.992	1.546
22	8i	100	95	79	60	32	28.749	y = 0.211 x - 0.995	0.960	1.459
23	8j	100	95	77	58	32	30.230	y = 0.208 x - 1.026	0.972	1.480
24	Thiadimenol	100	98	89	76	59	1.945	y = 0.235 x - 0.065	0.992	0.289

Table 2 Fungicidal activity of compounds against R. solani

Arrival of equation 2

$$\log IC_{50} = -8.3866 - 39.598 \times HOMO - 19.346 \times DM + 8.8104 \times q_{\text{max}}^{\text{o}} +$$

$$30.670 \times q_{\min} \tag{2}$$

$$N = 22, R^2 = 0.9879, F = 348.41, S^2 = 0.0047$$

			Structure descriptors					
No.	Compd.	log IC ₅₀	НОМО	DM	$q^{ m O}_{ m max}$	q_{\min}		
1	5a	1.844	-0.3512	-0.2067	0.3524	-0.3512		
2	5b	1.860	-0.3534	-0.2067	0.3523	-0.3534		
3	5c	1.836	-0.3523	-0.2067	0.3524	-0.3523		
4	5d	1.860	-0.3525	-0.2067	0.3520	-0.3525		
5	5e	1.864	-0.3546	-0.2066	0.3519	-0.3546		
6	5f	1.822	-0.3534	-0.2067	0.3521	-0.3534		
7	7a	0.480	-0.2713	-0.2072	0.2748	-0.2713		
8	7b	0.387	-0.2710	-0.2070	0.2522	-0.2768		
9	7c	0.516	-0.2725	-0.2072	0.2745	-0.2725		
10	7 d	0.269	-0.2718	-0.2072	0.2748	-0.2718		
11	7e	0.516	-0.2718	-0.2072	0.2749	-0.2718		
12	7f	0.576	-0.2731	-0.2072	0.2746	-0.2731		
13	8a	1.513	-0.2896	-0.2095	0.3705	-0.2896		
14	8b	1.497	-0.2917	-0.4339	0.3685	-0.4339		
15	8c	1.439	-0.2922	-0.2071	0.3706	-0.2922		
16	8d	1.484	-0.2950	-0.2070	0.3696	-0.2950		
17	8e	1.567	-0.2963	-0.2070	0.3697	-0.2963		
18	8f	1.507	-0.2873	-0.2073	0.3706	-0.2873		
19	8g	1.530	-0.2945	-0.2086	0.3698	-0.2945		
20	8h	1.546	-0.2970	-0.2071	0.3691	-0.2970		
21	8i	1.459	-0.2907	-0.2072	0.3697	-0.2907		
22	8j	1.480	-0.2940	-0.2071	0.3697	-0.2940		

Table 5 Fungicidal activity and structure descriptors of title compounds

Table 6 The best four-descriptor model

Descriptor No.	X	$\pm \Delta X$	t-Test	Descriptor
0	-8.3866	1.5216	-5.5119	Intercept
1	-3.9598×101	1.1968×101	-3.3086	$HOMO^a$
2	-1.9346×101	7.4859	-2.5843	$\mathrm{D}\mathrm{M}^b$
3	8.8104	4.5244×10 ⁻¹	19.4733	$q^{\mathrm{O}}{}_{\mathrm{max}}{}^{c}$
4	3.0670×101	1.1916×101	2.5738	$q_{\min}{}^d$

^{*a*} Energy of the highest occupied molecular orbit in atomatic units. ^{*b*} Dipole moment. ^{*c*} Max net atomic charge for a O atom. ^{*d*} Min net atomic charge.

Training set	N	R^2	F	S^2	Test set	Ν	R^2	F	S^2
A+B	15	0.9800	340.78	0.0043	С	7	0.9843	345.90	0.0045
B+C	14	0.9711	339.58	0.0041	А	8	0.9814	343.25	0.0044
A+C	15	0.9724	339.63	0.0050	В	7	0.9793	341.47	0.0043
Average		0.9745	340.00	0.0045	Average		0.9817	343.54	0.0044

Table 8 Internal validation of the QSAR model

^a Compounds A: 1, 4, 7, 10, 13, 16, 19, 22, Compounds B: 2, 5, 8, 11, 14, 17, 20, Compounds C: 3, 6, 9, 12, 15, 18, 21.