Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Covalent organic polymer framework with C-C bonds as fluorescent probe for selective iron detection

Ercan Özdemir, Damien Thirion and Cafer T. Yavuz*

Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701 Korea

CONTENTS

Section A. Elemental Analysis
Section B. Dynamic Light Scattering (DLS) measurements
Section C. Thermogravimetric Studies
Section D. Surface Area Measurements
Section E. Absorption spectroscopy
Section F. Fluorescence quenching titrations
Section G. Fluorescent images of COP-100 solutions
Section H. Supplementary References

Section A. Elemental Analysis

Table	S1 .	Elemental	composition	of	COP-100	synthesized	in	different	base	solvent
combi	natio	ns								

Run	Base/Solvent	С	Н	Ν	0
1	Piperidine/MeOH	77.95	4.19	12.62	5.25
2	NaOH/MeOH	77.91	4.09	11.92	6.08
3	MeONa/MeOH	77.69	4.06	12.05	6.21
4	EtONa/EtOH	75.42	4.21	12.66	7.71
5	tBuOK/tBuOH	77.24	4.70	9.80	8.25
6	tBuOK/THF	75.70	5.13	8.03	11.14

Section B. Dinamic Light Scattering (DLS) measurements

Figure S1. DLS intensity particle size distribution of COP-100

Section C. Thermogravimetric Studies

Figure S2. Thermogravimetric profiles of COP-100 in air (blue) and nitrogen (black)

Section D. Surface Area Measurements

Base	Solvents	S _{BET} m²/g	V _₽ * cm³/g	D _P ** nm
MeONa	MeOH	4.32	0.0077	8.3
EtONa	EtOH	4.56	0.0199	26.4
Piperidine	MeOH	6.13	0.0522	21.0
t–BuOK	t-BuOH	57.41	0.2216	16.3
t–BuOK	THF	82.26	0.5634	27.4

Table S2. Base / solvent effects on textural properties of COP-100

* Single point adsorption total pore volume of pores

** BJH Desorption average pore diameter (4V/A)

Section E. Absorption spectroscopy

COP-100 (25 mg) was stirred in DMF (100 mL) at 150°C for 24 h to achieve full solubility. Metal ion solutions were prepared from corresponding metal chlorides in 100 mL of DMF with 10 mM concentration.

Figure S3. Titration of **COP−100** solution (10 ^Dg/L) with Fe(III). Dashed lines show the absorption of the added Fe(III) solution.

Section F. Fluorescence Quenching-Titrations

Fluorescence emission spectra were recorded at 298 K unless otherwise specified. All titrations were carried out by gradually adding metal ion solutions. Each titration was repeated at least three times to get agreeable. **COP–100** solutions were excited at λ_{exc} =325 nm and their corresponding emission wavelength was monitored from λ = 350 nm to 625 nm. The fluorescence efficiency was calculated by $[(F_o-F)/F_o]\times100$ %, where F_o and F are the fluorescence intensities of the **COP–100** solution in absence and presence of metal ion, respectively. The slit width for excitation and emission were both set at 15 nm.

Figure S4. Stern–Volmer plots for the quenching of the emission intensity of COP–100 by Fe²⁺ and Fe³⁺

Determination of the detection limit for Fe²⁺ and Fe³⁺

The detection limits of Fe(II) and Fe(III) were determined according to the work of Huang et al. as follows¹. Under the same conditions, 5 determinations of the fluorescence emission spectra (λ_{exc} =325 nm) of a blank solvent (DMF) were carried out to obtain the baseline noise. The detection limits, which is the concentration of analyte producing an analytical signal equal to 3 times of the standard deviation of the blank signal, were found to be 2.45.10⁻⁷M for Fe²⁺ and 2.13.10⁻⁷ M for Fe³⁺.

Fluorescence decay times

Figure S5. Fluorescence decay times of COP–100 solution (10 μ g/L in DMF) with incremental addition of Fe(III).

The fluorescence decay times have been fitted to a triple exponential function as follows:

$$I(t) = a_1 e^{\frac{-t}{\tau_1}} + a_2 e^{\frac{-t}{\tau_2}} + a_3 e^{\frac{-t}{\tau_3}}$$

The average lifetime, τ_{average} is calculated as follows:

$$\tau_{average} = \sum_{i=1}^{3} a_i \tau_i$$

	τ_1 (ns)	τ ₂ (ns)	τ ₃ (ns)	a ₁	a ₂	a3	τ _{average} (ns)
COP-100	0.3376	2.4401	9.4449	0.6877	0.2500	0.0623	1.03833161
+Fe(III) 5μM	0.2637	2.1847	9.0788	0.6942	0.2427	0.0630	0.90394203
+Fe(III) 12.5μM	0.2395	2.0774	9.0422	0.7065	0.2348	0.0588	0.83420739
+Fe(III) 30μM	0.2444	2.2324	9.2451	0.7386	0.2078	0.0536	0.80958568
+Fe(III) 50μM	0.2022	2.0844	9.2387	0.7814	0.1778	0.0468	0.67272912

Table S3. Fluorescence decay times of COP-100 and COP-100 in the presence of Fe(III)

Section G. Fluorescent images of COP-100 solutions

Al ³⁺	Cd ²⁺	Co ²⁺	Cr ³⁺	Cu ²⁺	Fe ²⁺	Fe ³⁺	Hg ²⁺	Mg ²⁺	Mn ²⁺	Na⁺	Ni ²⁺	Zn ²⁺

Section H. Supplementary References

1. S. Huang, P. Du, C. Min, Y. Liao, H. Sun and Y. Jiang, 2013, *J. Fluoresc.*, **23**, 621-627.