Electronic Supplementary Information

Hydrothermal Synthesis of Gold Nanocrystals by Varying

Surfactant Concentration and Their LSPR and SERS Properties

Yanting Liu,^a Jun Zhou, ^{a,*} Xiaocong Yuan,^b Tao Jiang,^a Lucia Petti,^c Lu Zhou, ^a and Pasquale Mormile^c

Tel: +86-574-87600794; Fax: +86-574-87600744; E-mail: zhoujun@nbu.edu.cn

^c Institute of Cybernetics "E. Caianiello" of CNR, Via Campi Flegrei 34, 80072 Pozzuoli, Italy

Fig. S1 SEM images of the Au NCs synthesized with the concentrations of CTAB: (a) 10.5 mM, (b) 9 mM, (c) 7.5 mM and (d) 6 mM.

Fig. S2 SEM images of Au NCs synthesized with extremely low concentrations of CTAB: (a) small triangular plates (3 mM, CTAB /Au = 15) and (b) large triangular and hexagonal plates (1.5 mM, CTAB /Au = 7.5)

^a Institute of Photonics, Faculty of Science, Ningbo University, Ningbo, 315211, Zhejiang, China

^b Institute of Micro & Nano Optics, Shenzhen University, Shenzhen, 518060, China

Fig. S3. (a) 3D model of the truncated Au bitetrahedron and the corresponding distributions of near-field enhancement in the tangent planes along (a) x-y plane, (b) x-z plane and (c) y-z plane.

Fig. S4 Calculated near-field distributions in the central tangent plane of Au nanosphere with diameter 80nm

Analytical SERS enhancement factors (EFs) calculation

The calculation of SERS enhancement factors is followed the equation: EF = $(I_{SERS}/I_{bulk}) \times (N_{bulk}/N_{SERS})$ where I_{SERS} and I_{bulk} are the integrated intensities of a characteristic band from SERS and from bulk Raman , respectively; N_{bulk} is the number of bulk molecules probed in the bulk sample; and N_{SERS} is the number of excited molecules adsorbed on the SERS substrate. The Raman spectrum of the 4-MBA solution (10 mM) was used to estimate the "bulk" values in the EF equation. The diameter of illumination focus of the 2.39 μ m was first calculated using the following formula: $D_{diameter} = (\lambda/NA) \times 1.22$, in which the NA = 0.4 for the $20 \times objective$ lens of the Raman spectrometer at the 785 nm wavelength. Moreover, the penetration depth of laser beam is about 6.86 μ m in the solution. Then, the effective excitation volume was 64.5 μ m³ and the $N_{bulk} = 3.89 \times 10^8$. Next, with regard to the calculation of N_{SERS} , the excitation light of 785-nm wavelength was directly irradiated on the Au colloidal solution, so the effective excitation depth was assumed as a monolayer of NC in the Au colloidal solution. The effective excitation volume is:

$$V_{SERS} = \pi \left(\frac{D_{diameter}}{2}\right)^2 R$$

where R represents the dimension of NCs. In our calculation, the polyhedral Au NC was assumed as a

nanosphere with radius of 43 nm. The number of absorbed 4-MBA molecule was estimated through the initial concentration of 4-MBA solution (20 μ l, 1mM). And 1 ml solution of the 4-MBA-labeled polyhedral Au NCs was transferred to a 2 mm quartz cuvette for SERS measurement. Therefore, the number of excited molecules equals to the effective excitation volume multiplies the initial volume density of molecular, i.e. $N_{SERS} = V_{SERS} \times N_{Initial}/V_{Initial}$. Then, $N_{SERS} = 1.34 \times 10^3$ was obtained.

However, the above calculation process ignores the different surface areas between the polyhedral Au NCs samples. Hence, it is necessary to add a corrected factor to modify the N_{SERS} of nanosphere for the different kinds of polyhedral Au NCs. The corrected factor f is strongly dependent on the surface area of polyhedral Au NC and defined as follows^{S1, S2}:

$$f = \frac{[Spolyhedron]}{Ssphere}^{2},$$

where $S_{polyhedron}$ is the surface area of polyhedral Au NCs, and S_{sphere} the surface area of nanosphere. For high degree Au polygon, the corrected factor is calculated as $f_1 \approx 0.91$; (2) For Au truncated cuboctahedron, $f_2 \approx 0.82$; (3) For Au cuboctahedron, $f_3 \approx 0.74$. (4) For Au truncated octahedron, $f_4 \approx 0.68$; (5) For Au truncated bitetrahedron and tetrahedron, $f_5 \approx 0.53$. Consequently, the number of excited molecules of the polyhedral Au NCs colloidal samples are given as $N_1 = f \times N_{SERS} = 1.22 \times 10^3$, $N_2 = 1.10 \times 10^3$, $N_3 = 9.90 \times 10^2$, $N_4 = 9.11 \times 10^2$ and $N_5 = 7.78 \times 10^2$, respectively. In addition, the values of I_{bulk} is 4.87×10^4 and the values of I_{SERS} are $I_1 = 8.25 \times 10^5$, $I_2 = 1.29 \times 10^5$, $I_3 = 1.31 \times 10^5$, $I_4 = 1.34 \times 10^5$, and $I_5 = 1.67 \times 10^5$, respectively. Thus, the EF values of the polyhedral Au NCs colloidal samples are given as $EF_1 = 7.51 \times 10^5$, $EF_2 = 9.15 \times 10^5$, $EF_3 = 1.01 \times 10^6$, $EF_4 = 1.10 \times 10^6$, $EF_5 = 1.29 \times 10^6$.

Reference:

- [S1] Q. Zhang, N. Large and H. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 17255–17267.
- [S2] V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh and P. C. Ray, J. Phys. Chem. Lett., 2007, 446, 77–82.