Junfeng Wang,^a Weijun He,^{a,b} Xiaochu Qin,^c Xiaoyi Wei,^d Xinpeng Tian,^a Li Liao,^e Shengrong Liao,^a Bin Yang,^a Zhengchao Tu,^c Bo Chen,^e Fazuo Wang,^a Xiaojiang Zhou,^{b,*} and Yonghong Liu _{a,*}

^a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of

Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of

Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China;

- ^b College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China;
- ^c Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China;
- ^d Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- ^e SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China;
- * Author to whom correspondence should be addressed; E-Mail: <u>yonghongliu@scsio.ac.cn</u>; Tel./Fax:

(+86)-020-8902-3244; gale9888@163.com, Tel: +86-731-8845-8234.

List of supporting information	Page
Table S1. ¹ H and ¹³ C NMR data for 2 and 3 in CD ₃ OD.	
Table S2. Relative and free energies and equilibrium populations of low-energy	conformers of 1 and 3
in MeOH.	
Figure S1. Circular dichroism spectra of 1–3.	
Figure S2. Conformations of low-energy conformers of 1 and 3	S5
Figure S3 . The ¹ H NMR spectrum of penilline A (1) in DMSO- d_6	
Figure S4. The ¹³ C NMR spectrum of penilline A (1) in DMSO- d_6	S7
Figure S5 . The HMQC spectrum of penilline A (1) in DMSO- d_6	
Figure S6 . The ¹ H- ¹ H COSY spectrum of penilline A (1) in DMSO- d_6	S9
Figure S7. The HMBC spectrum of penilline A (1) in DMSO- d_6	
Figure S8. The NOESY spectrum of penilline A (1) in DMSO- d_6	S11
Figure S9. The HRESIMS spectrum of penilline A (1)	
Figure S10. The UV spectrum of penilline A (1)	S13
Figure S11. The ¹ H NMR spectrum of isopenilline A (2) in CD ₃ OD	S14
Figure S12 . The ¹³ C NMR spectrum of isopenilline A (2) in CD ₃ OD	
Figure S13. The HMQC spectrum of isopenilline A (2) in CD ₃ OD	S16
Figure S14. The ¹ H- ¹ H COSY spectrum of isopenill	ine A (2) in
CD ₃ ODS17	
Figure S15. The HMBC spectrum of isopenilline A (2) in CD ₃ OD	S18
Figure S16 . The ¹ H NMR spectrum of isopenilline A (2) in DMSO- d_6	
Figure S17 . The ¹³ C NMR spectrum of isopenilline A (2) in DMSO- d_6	
Figure S18 . The HMQC spectrum of isopenilline A (2) in DMSO- d_6	
Figure S19 . The ¹ H- ¹ H COSY spectrum of isopenilline A (2) in DMSO- d_6	
Figure S20 . The HMBC spectrum of isopenilline A (2) in DMSO- d_6	
Figure S21 . The NOESY spectrum of isopenilline A (2) in DMSO- d_6	
Figure S22. The HRESIMS spectrum of isopenilline A (2)	
Figure S23. The UV spectrum of isopenilline A (2)	
Figure S24 . The ¹ H NMR spectrum of penilline B (3) in CD ₃ OD	

Figure S25. The ¹³ C NMR spectrum	n of penilline B (3) in CD ₃ OD	
Figure S26. The HMQC spectrum	of penilline B (3) in CD ₃ OD	S29
Figure S27. The ¹ H- ¹ H COSY spec	trum of penilline B (3) in CD ₃ OD	
Figure S28. The HMBC spectrum	of penilline B (3) in CD ₃ OD	
Figure S29. The ¹ H NMR spectrun	n of penilline B (3) in DMSO- d_6	
Figure S30. The ¹³ C NMR spectrum	n of penilline B (3) in DMSO- d_6	S33
Figure S31. The HMQC spectrum	of penilline B (3) in DMSO- d_6	
Figure S32. The ¹ H- ¹ H COSY spec	trum of penilline B (3) in DMSO- d_6	
Figure S33. The HMBC spectrum	of penilline B (3) in DMSO- d_6	
Figure S34. The NOESY spectrum	of penilline B (3) in DMSO- d_6	
Figure S35. The HRESIMS spectru	um of penilline B (3)	
Figure S36. The UV spectrum of p	enilline B (3)	

No.		2		3
	$\delta_{ m C}$	$\delta_{\rm H} (J {\rm in} {\rm Hz})$	$\delta_{ m C}$	$\delta_{\rm H} \ (J {\rm in} {\rm Hz})$
2	175.3, C		182.5, C	
3	56.8, C		57.2, C	
4	127.2, CH	7.30, d (7.8)	129.4, CH	7.14, d (7.6)
5	123.5, CH	7.07, t (7.5)	122.1, CH	6.94, t (7.5)
6	130.0, CH	7.32, t (7.5)	130.0, CH	7.01, t (7.5)
7	108.6, CH	7.04, d (7.8)	110.4, CH	6.44, d (7.6)
8	144.7, C		144.5, C	
9	126.4, C		128.4, C	
10	37.6, CH ₂	2.74, dd (14.5, 2.0);	34.9, CH ₂	2.80, dd (14.9, 1.7);
		2.49, dd (14.5, 9.0)		2.65, dd (14.9, 7.2)
11	54.5, CH	3.52, m	55.1, CH	4.20, dd (7.2, 1.7)
12				
13	161.8, C		160.4, C	
14	124.8, C		128.1, C	
15				
16	166.9, C		168.0, C	
17	107.6, CH	6.57, s	104.6, CH	5.70, s
18	138.0, C		129.8, C	
20	137.3, CH	7.72, s	134.3, CH	8.75, s
22	120.1, CH	7.30, s	121.7, CH	7.64, s
23	43.7, C		43.5, C	
24	143.9, CH	6.02, dd (17.4, 10.9)	144.1, CH	6.00, dd (17.4, 10.9)
25	114.9, CH ₂	5.08, d (10.9);	114.6, CH ₂	5.06, d (10.9);
		4.99, d (17.4)		4.97, d (17.4)
26	22.6, CH ₃	1.08, s	22.3, CH ₃	1.06, s
27	22.2, CH ₃	0.99, s	21.9, CH ₃	0.94, s

Table S1. ¹H and ¹³C NMR Data for **2** and **3** (500, 125 MHz, CD₃OD, TMS, δ ppm).

Table S2. Relative and free energies^{*a*} and equilibrium populations^{*b*} of low-energy conformers of 1 and 3

conformer	ΔE	ΔG	P (%)
Compound 1			
(3 <i>R</i> ,10 <i>S</i>)-1a	0.19	0.00	84.4
(3 <i>R</i> ,10 <i>S</i>)-1b	1.26	1.38	8.2
(3 <i>R</i> ,10 <i>S</i>)-1c	2.22	1.77	4.2
(3 <i>R</i> ,10 <i>S</i>)-1d	0.0	1.97	3.0

in MeOH.

(3 <i>R</i> ,10 <i>S</i>)-1e ^{<i>c</i>}	2.70	3.49	0.2
Compound 3			
(3 <i>R</i> ,10 <i>S</i>)- 3 a	0.00	0.00	46.5
(3 <i>R</i> ,10 <i>S</i>)- 3 b	0.71	0.01	46.0
(3 <i>R</i> ,10 <i>S</i>)- 3 c	1.04	1.42	4.2
(3 <i>R</i> ,10 <i>S</i>)- 3d	2.10	1.97	1.7
(3 <i>R</i> ,10 <i>S</i>)- 3e ^{<i>c</i>}	2.55	2.18	1.2
(3 <i>R</i> ,10 <i>S</i>)- 3f ^{<i>c</i>}	2.88	2.96	0.3

^{*a*} At the B3LYP/def2-TZVP level, in kcal/mol. ^{*b*} From ΔG values at 298.15 K. ^{*c*} Conformer not used for ECD/TDDFT calculations.

Figure S1. Circular dichroism spectra of 1–3.

Figure S2. Conformations of low-energy conformers of 1 and 3.

3d

Figure S3. The ¹H NMR spectrum of penilline A (1) in DMSO- d_6

-4500	-4000	-3500	-3000	-2500	-2000	-1500	0001	-1000	-500	0-	
											-
0010:0											0. 2
6066 .0										₹ ₹ 6	<u>3' 10</u>
5. 3830 5. 3838 5. 2000										1	
-2, 3975 -2, 4126 -2, 5108										₹ <u>-</u> 1	.0.1 .0.
-2.5400 -2.5400											
+2087 2 -3.4934 -3.4934											
											2
4.9432											1. 30 4
8990 9 8880 :g											2. 2 2. 1 2. 1
9200 9 9-10-9 9-12-00-000-00 9-12-00-000-00-000-000-000-000-000-000-00											86 '0- 86 '0-
9088 [.] 9 9268 [.] 9-											0.1 0.5
1966 9- 8781 27 9961 2											ت ت 2.2
7. 926 .7 7. 9690										− F9	1-8
											.5 .5
9216.8—											6.0-
											6
											0.2
1199 01-											- 1° 00
											11.5

Figure S4. The ¹³C NMR spectrum of penilline A (1) in DMSO- d_6

000002	350000	300000	550000	200000	450000	400000	350000	300000	250000	200000	150000	100000	20000	C	-50000	
																- 0
																10
-9ŧ	 															20
06	2.12~															30
91	-35.															10
68	;.24—															0
9£	, .5∂.~ ~54. ′															- 0
																0 6
																2
																-)8
09	r 10 3.															- 06
66 52	-901 114															10(
20 29 98	1217													_		110
2₽ 10	125.												-=			120
₽0 9₽	128 128															130
71 69 18	134 145													_		140
																150
99	·691-															160
65 42	-165. 27172															170
																180
																190
																200
																210

Figure S5. The HMQC spectrum of penilline A (1) in DMSO- d_6

Figure S6. The ¹H-¹H COSY spectrum of penilline A (1) in DMSO- d_6

Figure S7. The HMBC spectrum of penilline A (1) in DMSO- d_6

Figure S8. The NOESY spectrum of penilline A (1) in DMSO- d_6

Figure S9. The HRESIMS spectrum of penilline A (1)

Figure S10. The UV spectrum of penilline A (1)

S13

光谱峰值检测报告

数据集: CC-5235 - RawData

Abs.

0.500

0.000 -0.061 200.00 2015-04-30 15:35:16

中速

0.2

启用 单个

UV-2600 系列

吸收值 2.0 0.1 秒.

323.0 nm

直接

标准

OFF

无

4 停用 停用

0.0100000

No.	P/V	波长(nm)	吸收值	描述
1	۲	322.60	0.764	
2	•	211.60	1.040	
3	0	277.60	0.337	

nm.

页1/1

Figure S11. The ¹H NMR spectrum of isopenilline A (2) in CD₃OD

S14

-5500	-5000	-4500	-4000	-3500	-3000	-2500	-2000	-1500	-1000	-500	0-	500
												0.5 0.0
-1266 .0- -1- 0780											53 ₹ 96	1.5 1.0
ר <mark>5: ∳623</mark> ר2: ∲602 ר2: ∲615												5 2.0
-5. 5091 -2. 7344 -2. 7305 -2. 7305 -2. 7505	Ī										-20 -20 -20 -20 -20 -20 -20 -20 -20 -20	3.0 0.
~3. 5254 ~3. 5254	>										F-06	.0 3.5
0826 . •												4.5 4
6200 ·9- 972 · 0248 9960 ·9-	<u> </u>										13 ⁷	5.5 5.0
22: 0325 -9: 0325 -9: 0244 -9: 0244										=	≤ F00	6.0
1990 2- 1990 2- 1990 2-	-										F-86	<u></u>
-7. 7175 -7. 3136 -7. 3190	-										¥ 1-92 1-92 1-93	0 7.5
												8.5 8.(
												5 9.0
												<u>о</u> .

Figure S12. The ¹³C NMR spectrum of isopenilline A (2) in CD₃OD

160000	150000	140000	130000	120000	110000	100000	00006	80000	20000	60000	20000	00000	40000	30000	20000	10000	0	-10000	
																	-		
																			- 10
21 89	₹55. ₹55.																		20
																			30
89	.78—																-		- 40
₽2	.64–										_								0
29	~24 [.]																		- 10
44	99																		60
																			- 02
																			- 08
																			- 06
																			- 00
09 ·2	.01 301 108																1		10
0.00 0.00 8.22																_			0 1
14 .8	212 212															_			- 12
86.6	~15. 715																		130
10 · 8																			140
29 °ŧ	,₩1 > ₩1 >																		20
																			0
22.1	91-																_		16
00 8	191																		170
08.30	iZI—																		180
																			- 06
																			16

Figure S13. The HMQC spectrum of isopenilline A (2) in CD₃OD

Figure S14. The ¹H-¹H COSY spectrum of isopenilline A (2) in CD₃OD

Figure S15. The HMBC spectrum of isopenilline A (2) in CD₃OD

Figure S16. The ¹H NMR spectrum of isopenilline A (2) in DMSO- d_6

0006-	-8000	-7000	-6000	-5000	-4000	-3000	-2000	-1000		>	
											0.0
0256 7259 7	0~		-							3* 10 <u>-</u> 3* 00	1.0
0228 9848 6998 4128 8909	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-						E C	≖90 °I ≖66 °0	2.0
46458 1828 1828 1828	2- 7 7										3.0
											4.0
6996 2066 8620 8191 8896			-							1. 22 . ∎. 22 .	5.0
729£ . 0029	97 97		-						={	<u>∓-81.1</u>	6.0
0298 9107 9107 9107 9208 9208	9 2 2 2 2 2 2 2 2 2 2 2 2 2		<u> </u>							0.93 1.02 1.02 1.02 1.02	7.0
8106	L—									<u>∓-00 .</u> [8.0
											9.0
											10.0
									1		

Figure S17. The ¹³C NMR spectrum of isopenilline A (2) in DMSO- d_6

-100000 -90000	-80000	-70000			-10000)
							- 0
							- 10
<u>- 66.15</u>							- 0
21.92							
-36.38						_	с С
42.18							40
-25.66							20 -
							- 09
							20
							- 8
							- 06
							- 8
−10∛ 01 −100 82							0 1
∠114. 29 ∠114. 29							0
124.24							12
-130.43							130
172.67 7142.67 7143.17							140
							150
-128.59							160
-164.43							170
68.271-						-	- 8
							90

Figure S18. The HMQC spectrum of isopenilline A (2) in DMSO- d_6

Figure S19. The ¹H-¹H COSY spectrum of isopenilline A (2) in DMSO- d_6

Figure S20. The HMBC spectrum of isopenilline A (2) in DMSO- d_6

Figure S21. The NOESY spectrum of isopenilline A (2) in DMSO- d_6

Figure S22. The HRESIMS spectrum of isopenilline A (2)

			Mass	Spectru	um Sm	artForn	nula	Repo	Ľ			
Analysis Info								Acquisit	ion Date	3/23/2015	9:16:46 AM	
Method Sample Name Comment		0 Dirrect	Infusion.m	eng_cc-4113	p.sod			Operato	r ent / Ser#	SCSIO maXis	29	
Acquisition P. Source Type Focus Scan Begin Scan End	arameter ESI Not active 100 m/z 2500 m/z		ັດ ທີ່ ທີ່ ດີ	n Polarity et Capillary et End Plate Of st Collision Cell	fset I RF	Positive 4500 V -500 V 2000.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		0.3 Bar 180 °C 4.0 <i>l/</i> min Waste	
Intens. x10 ⁵ 2.0-											+MS, 0.5-0.5mir	ר28-30) #
									445.1685			
1.0-1		422.1u	811									
0.5-			×	4	30.9139							
0.0	415	420	425	43		436.1944 , , , , 435			445	451.206	455	z/m
Meas. m/z # 422.1811 1 444.1629 1	Formula C 22 H 24 N 5 O 4 C 22 H 23 N 5 Na O 4	Score 100.00 100.00	m/z 422.1823 444.1642	err [mDa] 1.2 1.3	err [ppm] 2.8 2.9	mSigma 307.8 461.2	rdb 6 13.5 13.5	e [–] Conf even even	N-Rule ok ok			

Figure S23. The UV spectrum of isopenilline A (2)

S26

Page 1 of 1

3/23/2015 9:19:55 AM

printed:

Bruker Compass DataAnalysis 4.0

光谱峰值检测报告

2015-04-30 15:15:04

页1/1

0.339

275.20

Figure S24. The ¹H NMR spectrum of penilline B (3) in CD₃OD

3

-5000	-4500	-4000	-3500	-3000	-2500	-2000	-1500	-1000	-500	0	
-0.9413 										3. 31 ⊾ 3. 32 J	1.5 1.0 0.5
2. 6308 2. 6449 2. 6449 2. 7911 2. 7881 2. 7911 2. 7849 2. 7911 2. 6303 2. 6307 2. 6449 2. 7567 2. 7576 2. 7576 2. 7576 2. 7576 2. 7576 2. 7576 2. 7576 2. 7576 2. 7576 2. 75767 2. 7576 2. 75										F-00.1	3.5 3.0 2.5 2.0
4. 2107 4. 2107 4. 2193										5 ≖-90 .I	0 4.5 4.0
E6+0 · S J / 69 · S I E26 · S 8+66 · S 6200 · 9-										<u>I-141.1</u> 1.02-± 5	6.0 5.5 5.
6687 9 1267 9 1267 9 1267 9 1267 9 1267 9 127										1. 10 1. 09 1. 09 1. 00 1. 10 1. 00 1. 10 1. 10 1	.5 7.0 6.5
-7. 6356										1.02-≖ 5	8.5 8.0 7
											9.5 9.0

Figure S25. The ¹³C NMR spectrum of penilline B (3) in CD₃OD

00006	30000	00002	30000	20000	10000	30000	20000	10000	00000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000		10000	
-16	-12		16	1		<u>-</u>	-17		-1	- 0	ة ⁻ 6	χ_i		99	-2(-4(-3(-2(-1(<u> </u>	- 0
																						10
98	·17- ·77-	Þ																		_		20
96	66																					30 -
63	.46-	-																	_			- 40
19	.64-	-																				0
₽I 91	-22- -72-	-																	-			2
																						-)9
																						- 20
																						- 8
																						- 06
09 .	₽0I¬																					100
0† · 69 ·	0117 1114																					- 10
$20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	1717 1727 1728	L																	-			20
₽₽ 91.	-158 -158																		+-			0
68 · ₩0 ·	130	-																	===			13
νε 20 ·	139 	=																				- 140
01																	_	_				150
35.	091-	_																		_		160
<u>96</u> :	291-	-															_					170
																						- 08
G₽.	681-	-																				90
																						1 I

Figure S26. The HMQC spectrum of penilline B (3) in CD₃OD

Figure S27. The ¹H-¹H COSY spectrum of penilline B (3) in CD₃OD

Figure S28. The HMBC spectrum of penilline B (3) in CD₃OD

Figure S29. The ¹H NMR spectrum of penilline B (3) in DMSO- d_6

1. 13 x 2. 101 ± 3. 1. 05 ± 1. 11 x 1. 11 x 1. 10 ± 1. 00 ±		-1100		-600	-200	-100	. 5 0. 5
						P	20.1 2.1.13
	;					F	-20.1-
						P	.5 1.19
	:9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9						21 -0.99- -0.99- -1.10- 0.92- -1.007
	9 9 2 2 2 2						-00-1 -05- -05- -1.05- -05- -05- -05- -05- -05- -05- -05-
	<u>8.8–</u> 2.2					- I	21 <u>1.06-</u> 8 <u>1.06-</u>
	-10.1						10.5 0.94

Figure S30. The ¹³C NMR spectrum of penilline B (3) in DMSO- d_6

-120000	-110000	-100000	-90006	-80000	-70000	-60000	-50000	-40000	-30000	-20000	-10000	- 0-	10000
													- 0
													F
$\frac{64}{21}$	12-21 12-											-	- 5
08 .	-33												30
90	Z₽—											\exists	- 40
01.0	20-												20
06.1	69~ 69~										-	1	
													- 9
													20
													80
													6
98 · 70													
69 °C													110
<u>98</u> .97													-
88 98 90 .73	31												
12.75	31-7 31-7												13(
88 °E	51-′ ₽1-∖												
24.61	ÞI-												20
11.00	от_												
24 8	ы л												
22 9:	91												170
81.6	21-												
												ł	0
													19

Figure S31. The HMQC spectrum of penilline B (3) in DMSO- d_6

Figure S32. The ¹H-¹H COSY spectrum of penilline B (3) in DMSO- d_6

Figure S33. The HMBC spectrum of penilline B (**3**) in DMSO- d_6

Figure S34. The NOESY spectrum of penilline B (3) in DMSO- d_6

Figure S35. The HRESIMS spectrum of penilline B (3)

Figure S36. The UV spectrum of penilline B (3)

S39

1

光谱峰值检测报告

2015-04-30 15:29:46

数据集: CC-5234 - RawData

No.	P/V	波长(nm)	吸收值	描述
1	۲	325.80	0.444	
2	۲	209.20	0.716	
3	0	272.60	0.183	

页1/1