Supplementary Materials for

Hydrothermal growth of MnO₂/RGO/Ni(OH)₂ on nickel foam with superior supercapacitor performance

Shudi Min^{ab}, Chongjun Zhao^{*a}, Zhuomin Zhang^a, Kun Wang^a, Guorong Chen^a, Xiuzhen Qian^a, Zaiping Guo^{*b} ^aSchool of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China. Tel: +86-21-6425 0838; Fax: +86-21-6425 0838; E-mail: <u>chongjunzhao@ecust.edu.cn</u> ^bInstitute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia. Tel: 61 2 4221 5731; Fax: 61 2 4221 5731; E-mail: <u>zguo@uow.edu.au</u>

Experimental details

Synthesis of NF supported $MnO_2/RGO/Ni(OH)_2$ composite: Graphene oxide (GO) was synthesized by a modified Hummer's method [1, 2]. The synthesis of MnO_2/RGO/Ni(OH)_2 composite was carried out through a hydrothermal process, by immersing the cleaned Ni foam (NF, Alfa Aesar) in a mixed solution of GO and manganese nitrate hexahydrate (Mn(NO_3)_2·6H_2O, 98.0 wt%, Sinopharm Chemical Reagent Company). Typically, GO (30 mg) and Mn(NO_3)_2·6H_2O (1 m mol) were added to deionized water (50 ml) and dispersed in an ultrasonication bath for 30 min. The NF (1 × 2 cm²) substrate, with the bare area of 1 × 1 cm², was then immersed in this aqueous solution. The substrate and solution were then loaded into a Teflon-lined stainless steel autoclave (100 ml in volume) for hydrothermal reaction at 200 °C for 24 h. The final product was washed with water and ethanol in turn, and then dried in a vacuum oven at 80 °C for 12 h. The MnO₂/RGO/Ni(OH)₂/NF composite samples were denoted as MRNN. $MnO_2/Ni(OH)_2/NF$ (MNN) and RGO/Ni(OH)_2/NF (RNN) composites were also prepared under the identical conditions, except that there was no GO or $Mn(NO_3)_2$ ·6H₂O involved.

Characterization: Wide-angle (10°-80°, 40 kV/200 mA) powder X-ray diffraction (XRD) was conducted using an X-ray diffractometer with Cu K α radiation (λ = 0.15406 nm). X-ray photoelectron spectroscopy (XPS) spectra were collected on an ESCALAB 250Xi (Thermo Fisher, U.S.A.) instrument. The morphology and elemental composition of the samples were investigated by field-emission scanning electron microscopy (FESEM, Hitachi S-4800), transmission electron microscopy (TEM, JEOL JEM-2011), and energy dispersive spectroscopy (EDS, Bruker, AXS, Quantax 400-30), respectively.

Electrochemical Measurements: The electrochemical measurements were performed using a standard three-electrode cell in 1 M KOH aqueous solution. All the composite samples with an approximate area of 1×1 cm² were directly used as working electrodes, while platinum foil $(2 \times 3 \text{ cm}^2)$ and a saturated calomel electrode (SCE) served as the counter and reference electrodes, respectively. Cyclic voltammograms (CV) and galvanostatic charge/discharge measurements were carried out using an electrochemical workstation (CHI660e, Shanghai). The loading of MnO₂/RGO/Ni(OH)₂ (weight of active material per unit area of electrode) was determined according to the method reported in a previous work [1]. Typically, after the electrochemical measurements, MnO₂/RGO/Ni(OH)₂/NF electrode was treated in de-ionized water and ethanol in a sonication bath for 30 min, respectively. And then it was subsequently ultra-sonically treated in hydrochloric acid (10 wt%), and it is found that the MnO₂, RGO, and Ni(OH)₂ of the composites were well removed from the Ni foam when the irradiation time reached 5 min. Thus, the loading amount of MnO₂/RGO/Ni(OH)₂ (weight of active material) was determined by the weight difference (Δ m) of the above electrode before testing (m1) and after ultrasonic treatment for 5 min (m2) as follows:

$$\Delta m = m1 - m2 \tag{1}$$

And the specific capacitance C_s can be calculated from the following equation:

$$C_s = \frac{C}{S} = \frac{I^* \Delta t}{\Delta V^* S} \tag{2}$$

where I (A) is the charge-discharge current; Δt (s) is the discharge time; ΔV (V) is the potential window; and S (cm²) is the geometric surface area of the MRNN composite electrode.

Supplementary Figures

Fig. S1 XRD pattern of RGO/Ni(OH)₂/NF (RNN) composite

Fig. S2 (a) Top-view FESEM image of MnO₂/RGO/Ni(OH)₂/NF. (b-e)

Corresponding EDS mapping of the MRNN composite: (b) C element, (c) O element,

(d) Ni element, and (e) Mn element.

Fig. S3 EDS spectrum of MRNN composite.

Fig. S4 Low magnification FESEM images of (a) RGO/Ni(OH)₂/NF, and (b)

MnO₂/RGO/Ni(OH)₂/NF.

pure nickel foam at a scan rate of 5 mV s⁻¹.

5000 cycles.

References

- [1] S.D. Min, C.J. Zhao, G.R. Chen, X.Z. Qian, Electrochim. Acta 115 (2014) 155-164.
- [2] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339-1339.