Supporting Information for

Capture of Radioactive Cations from Water Using Niobate Nanomaterials with Layered and Tunnel Structures

Jin Sun, *a Long Liu, a Xiaoliang Zhao, a Shuanglei Yang, b Sridhar Komarneni, c

Dongjiang Yang*a,d

^aCollaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong

Province; College of Chemistry, Chemical and Environmental Engineering, Qingdao University,

Qingdao 266071, China. E-mail: d.yang@qdu.edu.cn.

^bState Key Laboratory of Powder Metallurgy, Central South University, Changsha, China 410083.

^cMaterials Research Institute and Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

^dQueensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Brisbane,

QLD 4111, Australia.

Formula	KNb ₃ O ₈	Na ₂ Nb ₂ O ₆ ·H ₂ O
Crystal system	orthorhombic	monoclinic
Space-group	Amam	C2/c
Cell parameters	a−8.002(2) Å	a=17.0511 Å
	a=8.903(3) A	b=5.0293 Å
	D=21.16(2) Å	c=16.4921 Å
	c=3./99(2) A	β=113.9420°
Cell ratio	a/b=0.4207	a/b=3.3904
	b/c=5.5699	b/c=0.3050
	c/a=0.4267	c/a=0.9672
Cell volume	715.68(81) Å ³	1292.59 Å ³
Z	4	8

Table S1. Phase compositions and crystallographic parameters for nanofibers in this study

Fig. S1. The plot of the K⁺ (Na⁺) concentration with ion-exchange time when the initial concentration of M cations is 5 mmol/L and the amount of adsorbent = 1 g/L (M= Sr^{2+} , Ba^{2+} or Cs^+).

Fig. S2. The pH value of the solution with desorption time when 100 mg of (a) KNb₃O₈-M or (b) $Na_2Nb_2O_6 \cdot H_2O$ -M were redispersed into 100 mL deionized water for 24 h (M=Sr²⁺, Ba²⁺ or Cs⁺).

Fig. S3. Influence of the pH value of the solutions on equilibrium capacity for Sr^{2+} , Ba^{2+} and Cs^+ sorptions. Q_e is the equilibrium capacity in normal environment and Q_p is the equilibrium capacity in solutions with various pH values. The adsorbent is KNb₃O₈ nanorods.

Fig. S4. Influence of the pH value of the solutions on equilibrium capacity for Sr^{2+} and Ba^{2+} sorptions. The adsorbent is $Na_2Nb_2O_6 \cdot H_2O$ nanofibers.