## Supporting Information

Zirconium-doped porous magadiite heterostructures upon 2D intragallery in situ hydrolysis-condensation-polymerization strategy for liquid-phase benzoylation

Yuewen Ma, Huan Sun, Qi Sun, Hui Zhang*

*Correspondence should be addressed to Hui Zhang.
Email: huizhang67@gst21.com
Tel.: +8610-6442 5872
Fax: +8610-6442 5385


Fig. S1 TG analysis of the magadiite (a), QM (b), QOTM (c) and QOTM-0.1Zr (d).


Fig. S2 ${ }^{1} \mathrm{H}$ NMR of the product 4-MBP.


Fig. S3 XRD (A) and IR (B) spectra of magadiite (a), OM (b), and precursors QOTM (c) and QOTM- $x \mathrm{Zr}$ (d-h: $x=0.0125-0.2$ ).


Fig. S4 The $\mathrm{N}_{2}$ adsorption-desorption isotherms (a) and pore size distribution curves based on BJH (b) and DFT (c) of PMH and PMH- $x \mathrm{Zr}$ catalysts.


Fig. S5 SEM/EDX, TEM and HRTEM images of Na-magadiite ( $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ) and QM (d, e, f).


Fig. S6 SEM images of the precursors QOTM (a) and QOTM-xZr(b-f) (from b to $\mathrm{f}, \mathrm{x}=0.0125,0.025,0.05$, $0.1,0.2$ ).


Fig. S7 In situ FTIR spectra for PMH (a) and PMH-0.0125Zr (b) after pyridine adsorption and evacuation at elevated temperatures.


Fig. S8 Si 2 p and O 1s XPS of PMH and PMH- $x \mathrm{Zr}$ catalysts.



Fig. S9 Effect of reaction temperature, time and anisole/BOC ratio on the benzoylation activity of anisole with BOC over PMH-0.025Zr. Reaction conditions: anisole $(108 \mathrm{mmol}) / \mathrm{BOC}(2.65 \mathrm{mmol})=40: 1 \mathrm{or}$, anisole $(108 \mathrm{mmol}): \mathrm{BOC}(15.88 \mathrm{mmol})=7: 1, \mathrm{~W}_{\text {cat. }}=0.2 \mathrm{~g}, n$-tetradecane $0.1 \mathrm{~g}(\mathrm{GC}$ internal standard).





$\mathrm{d}(3,4)=0.72 \mathrm{~nm}$


Fig. S10 Three-dimensional reactants and products with corresponding interatomic distances.


Fig. S11 Recyclability of PMH-0.1Zr for the benzoylation of anisole with BOC. Reaction conditions: anisole $108 \mathrm{mmol}, \mathrm{BOC} 2.65 \mathrm{mmol}, \mathrm{W}_{\text {cat. }} 0.2 \mathrm{~g}, n$-tetradecane $0.1 \mathrm{~g}, 140^{\circ} \mathrm{C}, 3 \mathrm{~h}$.


Fig. S12 XRD patterns (A) and FTIR spectra (B) of PMH-0.1Zr (a), PMH-0.1Zr-reused5 (b) and PMH-0.1Zr-recalcined (c).

Table S1 Chemical compositions of synthetic magadiite, QM, PMH and PMH-xZr samples.


Table S2 Deconvolution of ${ }^{29}$ Si MAS NMR spectra of the catalysts: chemical shift values, relative portions (\%) and ( $\left.\mathrm{Q}^{2}+\mathrm{Q}^{3}\right) / \mathrm{Q}^{4}$ ratios.

| Sample | Chemical shift, ppm |  |  | $\left(\mathrm{Q}^{2}+\mathrm{Q}^{3}\right) / \mathrm{Q}^{4}$ Ratio |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{Q}^{2}(\%)^{a}$ | $\mathrm{Q}^{3}(\%)^{a}$ | $\mathrm{Q}^{4}(\%)^{a}$ | 0.32 |
| PMH | $-92.3(3.3)$ | $-102.0(21.2)$ | $-111.1(75.5)$ | 0.40 |
| PMH-0.0125Zr | $-92.4(5.3)$ | $-103.1(23.4)$ | $-111.4(71.3)$ | 0.43 |
| PMH-0.05Zr | $-92.6(5.6)$ | $-101.7(24.5)$ | $-110.8(69.9)$ | 0.49 |
| PMH-0.1Zr | $-91.6(3.9)$ | $-102.5(29.0)$ | $-111.2(67.1)$ | 0.33 |
| PMH-0.2Zr | $-91.4(5.8)$ | $-101.7(19.0)$ | $-111.4(75.2)$ |  |
| $a$ Relative portion in the parentheses. |  |  |  |  |

Table S3 The XPS data of PMH and PMH- $x \mathrm{Zr}$ catalysts.

| Catalysts | O 1s |  | $\mathrm{A}_{\text {Si-o-si/ }} / \mathrm{A}_{\text {Si-O-Zr }}{ }^{\text {a }}$ | Zr 3d |  | $\mathrm{A}_{3 \mathrm{~d} 5 / 2} / \mathrm{A}_{3 \mathrm{~d} 3 / 2}$ | Si 2p | $\begin{aligned} & \mathrm{Si} / \mathrm{Zr} \\ & \text { ratio }^{b} \end{aligned}$ | $\mathrm{Zr} /$ Si ratio ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Si-O-Si | Si-O-Zr |  | $3 d_{3 / 2}$ | $3 \mathrm{~d}_{5 / 2}$ |  |  |  |  |
| PMH | 532.99 | - | - | - | - | - | 102.83 | - | - |
| PMH-0.0125Zr | 533.04 | 530.68 | 25 | 185.83 | 183.45 | 2.9 | 102.84 | 81.5 (76.9) | 0.0123 (0.013) |
| PMH-0.025Zr | 533.03 | 530.63 | 21 | 185.96 | 183.56 | 1.9 | 102.84 | 86.4 (47.6) | 0.0116 (0.021) |
| PMH-0.05Zr | 532.87 | 530.67 | 18 | 185.57 | 183.27 | 3.0 | 102.68 | 22.0 (26.3) | 0.045 (0.038) |
| PMH-0.1Zr | 532.76 | 530.76 | 5.3 | 185.72 | 183.47 | 2.9 | 102.61 | 12.9 (17.9) | 0.077 (0.056) |
| PMH-0.2Zr | 532.79 | 530.97 | 5.6 | 185.66 | 183.32 | 1.9 | 102.54 | 5.6 (7.7) | 0.179 (0.130) |

[^0]
[^0]:    ${ }^{a}$ Peak area ratio of two components corresponding to $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ and $\mathrm{Si-O}-\mathrm{Zr}$ upon deconvoluted spectra. ${ }^{b}$ Data in parentheses from EDX..

