Electronic Supplementary Information

Palladium(II) complexes containing ONO tridentate hydrazone for Suzuki-Miyaura coupling of aryl chlorides in aqueous-organic media

Vignesh Arumugam,^a Werner Kaminsky,^b N. S. P. Bhuvanesh^c and Dharmaraj Nallasamy^a*

^aInorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore 641 046, India. Fax: +91 422 2422387; Tel: +91 4222428316; E-mail: <u>dharmaraj@buc.edu.in</u>

^bDepartment of Chemistry, University of Washington, Seattle, Washington 98195, USA.

^cDepartment of Chemistry, Texas A & M University, College Station, TX 77843, USA.

Contents

Tables Pg. 2&3

¹H & ¹³C NMR spectra of complexes Pg. 4 – 6.

¹H & ¹³C NMR spectra & data of the coupled products Pg. 7–33

Complex	1	2	3
Pd(1) - N(1)	1.9674 (16)	1.9638 (12)	1.9720 (3)
Pd(1) - O(1)	1.9700 (14)	1.9724 (11)	1.9670 (2)
Pd(1) - O(2)	1.9922 (14)	1.9914 (11)	2.0000 (2)
Pd(1) - P(1)	2.2956 (5)	2.2743 (5)	2.2996 (9)
C(1) - N(1)	1.3010 (3)	1.2919 (19)	1.2940 (4)
C(1) - O(3)	1.3200 (2)	1.3179 (18)	1.3240 (4)
C(2) - O(12)	1.3140 (2)	1.3085 (17)	1.3110 (4)
N(1) - N(2)	1.4000 (2)	1.3980 (17)	1.3970 (4)
C(2) - N(12)	1.3070 (3)	1.3063 (19)	1.3040 (4)
C(1) - C(2)	1.4300 (3)	1.4310 (2)	1.4290 (5)
C(2) - C(3)	1.4120 (3)	1.4090 (2)	1.4060 (5)
N(1) - Pd(1) - O(1)	93.86 (6)	93.21 (5)	93.27 (10)
N(1) - Pd(1) - O(2)	80.26(6)	80.72 (5)	80.24 (10)
O(1) - Pd(1) - O(2)	173.64 (6)	173.89 (4)	173.50 (9)
N(1) - Pd(1) - P(1)	178.52 (5)	175.52 (4)	178.83 (8)
O(1) - Pd(1) - P(1)	88.08(4)	91.20 (4)	87.19 (7)
O(2) - Pd(1) - P(1)	98.28(4)	94.88 (4)	99.31 (7)
C(1) - N(1) - Pd(1)	126.31 (14)	126.72 (11)	126.10 (2)
N(2) - C(12) - O(2)	126.11 (19)	126.21 (14)	126.00 (3)
N(2) - N(1) - Pd(1)	115.37 (12)	114.66 (9)	114.90 (2)

Table 1. Selected bond lengths (Å) and angles (°) for the complexes 1, 2 and 3

Table 2. Crystal data and structure refinement for complexes 1, 2 and 3

Complex	1	2	3
CCDC number	1005675	852732	1017037
Empirical formula	C ₃₄ H ₂₅ N ₂ O ₃ P Pd	C ₃₄ H ₂₅ N ₂ O ₂ P Pd S	C ₃₅ H ₂₆ N ₃ O ₂ P Pd
Formula weight	646.93	662.99	657.96
Temperature (K)	100(2)	110(2)	110(2)
Wavelength (Å)	0.71073	0.71073	1.54178
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_1/n$	$P 2_1/n$	$P 2_1/n$
Unit cell dimensions			
a (Å)	15.5191(14)	15.531(5)	15.3735(13)
b (Å)	9.0388 (8)	10.833(3)	8.9176(8)
c (Å)	19.9113(17)	17.549(5)	20.6686(15)
α (°)	90	90	90
β (°)	97.858(3)	101.774(3)	97.251(5)
γ (°)	90	90	90
Volume (Å ³)	2766.8(4)	2890.5(14)	2810.9(4)
Ζ	4	4	4

Density (calculated) (Ma	1 553	1 523	1 555
Defisity (calculated) (Nig -3)	1.555	1.525	1.555
m ²)			
Absorption coefficient	0.768	0.804	6.172
$(\mathrm{mm}^{-\mathrm{f}})$			
F(000)	1312	1344	1336
Crystal size (mm ³)	0.17 x 0.09 x 0.07	0.50 x 0.50 x 0.40	0.15 x 0.12 x 0.03
Reflections collected	88216	31660	21167
Independent reflections	6860 [R(int) = 0.0469]	6583 [R(int) = 0.0236]	3994 [R(int) = 0.0710]
Max. and min. transmission	0.9482 and 0.8805	0.7391 and 0.6892	0.8365 and 0.4579
Refinement method	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-
	on F^2	on F^2	squares on F ²
Data / restraints / parameters	6860 / 0 / 370	6583 / 0 / 370	3994 / 0 / 380
Goodness-of-fit on F^2	1.069	1.030	1.019
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0281, $wR2 =$	R1 = 0.0205, WR2 =	R1 = 0.0306, $wR2 =$
	0.0705	0.0518	0.0730
R indices (all data)	R1 = 0.0375, wR2 =	R1 = 0.0226, $wR2 =$	R1 = 0.0368, wR2 =
	0.0774	0.0531	0.0744
Largest diff. peak and hole	1.182 and -0.895	0.352 and -0.316	0.489 and -0.749
$(e.Å^{-3})$			

Fig. S2: ¹³C NMR spectrum of complex 1

Fig. S4: ¹³C NMR spectrum of complex 2

Fig. S5: ¹H NMR spectrum of complex 3

42	02	53	999 91 77 77 77 77 77 77 77 77 77 77 77 77 77
5	0	00	10 - 0 0 0 0 0 0 0 0 0 0
6	6	4	MMNNNNHHHH
			HANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1	1	1	YYV IVII

Fig. S6: ¹³C NMR spectrum of complex 3

NMR spectral data of the coupled products listed in Table 3 and 4.

¹H and ¹³C NMR spectra were recorded in deuterated CHCl₃ as solvent on BRUKER 400 and

100 MHZ instruments respectively.

- Entry 1a: biphenyl-4-carbonitrile ¹H NMR δ (ppm): 7.72 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 3.6 Hz,1H), 7.50 7.58 (m, 3H), 7.46 (d, J = 7.6 Hz,1H), 7.30 7.38 (m, 2H).
 ¹³C NMR: 147.2, 146.3, 141.4, 135.7, 135.2, 130.2, 129.7, 127.0, 125.6, 122.3.
- 2) Entry 1b: 2'-methyl-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 8.19 (d, J = 2.8 Hz, 1H), 8.18 (d, J = 3.6 Hz, 1H), 7.50 7.93 (m, 4H), 7.51(d, J = 3.6 Hz, 1H), 7.12(s, 1H), 2.39 (s, 3H).
 ¹³C NMR: 158.7, 148.9, 147.1, 138.3, 133.6, 130.9, 128.4, 127.0, 126.0, 125.5, 124.9, 122.7, 20.7.
- 3) Entry 1c: 4'-methyl-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 7.70 (d, J = 6.4 Hz, 2H), 7.55 7.68 (m, 4H), 7.46 (t, J = 6.6 Hz, 1H,), 7.30 (d, J = 7.2 Hz, 1H), 2.56 (s, 3H).
 ¹³C NMR: 149.8, 140.8, 138.2, 137.9, 128.3, 127.6, 126.5, 125.3, 123.9, 21.3.
- 4) Entry 1d: 2,3-dimethyl-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 7.55 7.49 (2H, m), 7.39(2H, s), 7.16-7.25(m, 3H), 3.99 (s, 3H), 2.60 (3H, s).
 ¹³C NMR: 156.4, 138.4, 137.21, 130.9, 130.7, 128.5, 128.29, 120.60, 111.0, 55.3, 21.2.
- 5) Entry 1e: 4'-methoxy-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 8.35 (1H, s), 8.20 (d, J = 8.4 Hz, 3H), 8.09 (d, J = 8.4 Hz, 1H,), 7.77 7.79 (m, 1H,), 7.41 7.67 (m, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 4.03 (s, 3H).
 ¹³C NMR : 156.5, 136.1, 133.3, 132.3, 130.9, 130.5, 128.6, 127.9, 127.4, 127.0, 125.7, 125.6, 120.8, 111.1, 55.2.
- 6) Entry 1f: 4'-*t*-butyl-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 7.38 7.40 (4H, m), 7.0 (t, J = 2.4 Hz, 1H), 6.94 6.99 (m, 1H,), 6.09(s, 2H), 2.45(s, 9H).
 ¹³C NMR: 149.8, 140.8, 138.2, 137.9, 128.3, 127.6, 127.5, 126.5, 125.3, 123.9, 34.2, 31.5.
- 7) Entry 1g: 3'-hydroxy-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 7.82 (d, J = 1.2 Hz, 1H, s), 7.55 7.60 (m, 3H), 7.48 (t, J = 3.6 Hz, 2H,), 7. 37 (t, J = 4.0 Hz, 1H), 6.79(s, 1H).
 ¹³C NMR: 143.5, 138.4, 132.3, 128.7, 126.9, 126.4, 125.8, 108.7.
- 8) Entry 1h: 4'-naphthalen-2-yl-benzonitrile ¹H NMR δ (ppm): 8.04 (1H, s), 7.95 (4H, t, J = 6.4), 7.73 (1H, d, J = 8.4 Hz), 7.57 7.64 (3H, m), 6.94 (2H, s).
 ¹³C NMR: 143.7, 138.8, 133.6, 132.4, 129.7, 128.3, 127.7, 127.6, 126.4, 126.2, 125.5, 124.3, 123.9, 108.8.

- 9) Entry 1i: [1,1';4',1"]terphenyl-4-carbonitrile ¹H NMR δ (ppm): 8.84(d, J = 4 Hz, 1H), 8.19 (d, J = 6.8 Hz, 2H), 7.96 (d, J = 8 Hz, 2H), 7.75 7.79 (m, 1H), 7.57 7. 66 (m, 1H), 7.52 7.54 (4H, m), 7.31 (dd, J = 0.8, 4 Hz, 2H).
 ¹³C NMR: 158.9, 149.2, 138.2, 136.1, 133.7, 130.9, 128.1, 127.2, 126.2, 125.3, 125.0, 124.7, 121.7.
- 10) Entry 1j: 4'-bromo-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 8.70 (1H, s), 8.18 (t, J = 2.8 Hz, 1H), 7.93 (d, J = 6.8 Hz, 2H), 7.64 (t, J = 3.6 Hz, 2H), 7.54 7.58 (m, 1H m), 7.12(s,1H).
 ¹³C NMR: 158.9, 149.2, 138.2, 136.1, 133.7, 130.9, 128.6, 127.2, 126.2, 125.3, 125.0, 124.7, 121.7.
- 11) Entry 1k: 4'-dimethylamino-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 8.24 (s, 1H), 7.84 (d, J = 8 Hz, 1H), 7.56 7.59 (m, 1H), 7.43 (t, J = 3.6 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.0 7. 11 (2H, m), 2. 84 (6H, s).
 ¹³C NMR: 156.4, 138.4, 137.2, 130.9, 128.5, 128.2, 127.3, 120.6, 111.6, 55.5.
- 12) Entry 11: 4'-acetyl-biphenyl-4-carbonitrile ¹H NMR δ (ppm): 7. 59 7.65 (4H, m), 7.40 7.41 (4H, m), 2.65 (s, 3H).
 ¹³C NMR: 197.2, 156.4, 137.1, 135.3, 130.5, 129.2, 127.8, 127.4, 121.4, 109.7, 26.3.
- 13) Entry 2a: 4-nitrobiphenyl ¹H NMR δ (ppm): 8.15 (t, J = 8.2 Hz, 1H), 7.85 (t, J = 10.2 Hz, 1H), 7.59 7.76 (m, 2H), 7.52 7.57 (m, 2H), 7.44 7.48 (m, 2H).
 ¹³C NMR: 146.9, 137.6, 132.6, 132.5, 131.5, 130.3, 129.4, 128.6, 128.1.
- 14) Entry 2b: 2-methyl-4'-nitro-biphenyl ¹H NMR δ (ppm): 7.78 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.44 7.47 (m,1H) 7.36 7.40 (m,1H) 7.36 7.40 (m, 1H), 7.17 (s, 1H), 7.00 (s, 1H) 2.37 (s, 3H).
 ¹³C NMR: 140.5, 140.2, 138.2, 133.1, 131.7, 130.4, 129.6, 128.8, 128.3, 122.9, 121.5, 21.3.
- 15) Entry 2c: 4'-methyl-4-nitro-biphenyl ¹H NMR δ (ppm): 7.49 7.51 (m, 2H), 7.33 7.37 (m, 2H), 7.27 (s, 2H), 7.00 (s, 2H), 2.50 (s, 3H).
 ¹³C NMR: 148.6, 136.4, 131.8, 128.6, 128.4, 122.4, 116.8, 112.6, 108.9, 107.6, 22.9.
- 16) Entry 2d: 2,3-dimethyl-4'-nitro-biphenyl ¹H NMR δ (ppm): 7.78 (d, J = 8 Hz, 2H), 7.57 (d, J = 8 Hz, 2H), 7.48 7.53 (m, 1H) 7.25 (d, J = 8 Hz, 1H), 6.77 (d, J = 8 Hz, 1H), 2.76 (s, 3H), 2.45 (s, 3H).
 ¹³C NMR: 143.9, 136.1, 132.7, 130.4, 130.1, 129.8, 128.7, 128.1, 127.1, 125.5, 21.6, 18.9.

- 17) Entry 2e : 2'-methoxy-4-nitro-biphenyl ¹H NMR δ (ppm): 8.37 (d, J = 7.6 Hz, 2H),
 7.56 (t, J = 6.6 Hz, 2H), 7.53 (d, J = 8 Hz, 2H), 7.47 (s, 2H), 4.05 (s, 3H).
 ¹³C NMR: 158.7, 139.1, 137.2, 134.9, 132.1, 131.2, 128.7, 128.4, 127.1, 55.0,
- 18) Entry 2f : 4'-*tert*-butyl-4-nitro-biphenyl ¹H NMR δ (ppm): 7.89 (d, J = 9.2 Hz, 2H),
 7.64 (d, J = 7.6 Hz, 2H), 7.46 (t, J = 5.8 Hz, 2H), 7.38 7.42 (m, 2H), 2.73 (s, 9H).
 ¹³C NMR: 140.2, 139.5, 133.2, 131.8, 128.5, 128.1, 121.9, 117.1, 29.5, 20.1.
- 19) Entry 2g: 4'-nitro-biphenyl-3-ol ¹H NMR δ (ppm): 8.37 (d, J = 7.6 Hz, 1H), 8.30 (d, J = 4.4 Hz, 2H), 7.68 (d, J = 8 Hz, 1H), 7.53 7.59 (m, 2H), 7.11 (s, 1H), 6.82 (d, J = 8 Hz, 1H), 5.80 (s, 1H).
 ¹³C NMR: 152.2, 142.9, 134.5, 132.1, 130.5, 128.7, 127.2, 125.7, 125.5, 122.8.
- 20) Entry 2h: 2-(4-nitro-phenyl)-naphthalene ¹H NMR δ (ppm): 7.75 (d, J = 8 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.39 (s, 1H), 7.37 (d, J = 7.2 Hz, 1H), 7.08 (t, J = 4 Hz, 2H), 6.98 (s, 1H) 6.81 (d, J = 8 Hz, 1H).
 ¹³C NMR: 147.2, 140.4, 133.8, 131.4, 128.3, 127.0, 126.5, 121.3, 116.9, 111.6, 108.2, 101.8.
- 21) Entry 2i: 4-nitro-[1,1';4',1"]terphenyl ¹H NMR δ (ppm): 8.33 8.38 (m, 2H), 7.62 (d, J = 8 Hz, 2H), 7.50 7.58 (m, 2H), 7.49 (d, J = 20.8 Hz, 2H), 7.31 7.34 (m, 2H), 7.10 7.16 (m, 2H), 6.80 (d, J = 8 Hz, 2H).
 ¹³C NMR: 140.1, 132.7, 131.3, 129.5, 128.5, 125.4, 125.1, 123.6, 122.9, 119.2, 114.3, 101.5.
- 22) Entry 2j: 4'-bromo-4-nitro-biphenyl ¹H NMR δ (ppm): 7.51 (d, *J* = 7.2 Hz, 2H), 7.46 7.49 (m, 2H), 7.31 7.37 (m, 2H), 7.02 (s, 2H), 6.97 (s, 2H). ¹³C NMR: 142.4, 131.5, 128.2, 128.2, 123.9, 113.7, 111.0, 106.4, 101.4, 87.5.
- 23) Entry 2k: dimethyl-(4'-nitro-biphenyl-4-yl)-amine ¹H NMR δ (ppm): 7.52 (dd, J = 8 Hz, 2H), 7.32 7.39 (m, 2H), 7.09 (s, 2H), 6.99 (s, 2H), 3.44 (s, 6H).
 ¹³C NMR: 147.2, 140.8, 131.4, 128.7, 128.5, 123.5, 114.4, 112.9, 108.8, 38.9.
- 24) Entry 21: 1-(4'-nitro-biphenyl-4-yl)-ethanone ¹H NMR δ (ppm): 7.43 7.56 (m, 2H), 7.33 7.35 (m, 2H), 7.17 (d, J = 2.4Hz, 2H), 6.99 (dd, J = 2.8, 2.8 Hz, 2H), 2.71 (s, 3H).
 ¹³C NMR: 197.3, 142.4, 135.5, 131.7, 128.5, 123.4, 117.7, 113.5, 112.3, 26.3.

Fig. S8: ¹³C NMR spectrum of biphenyl-4-carbonitrile

Fig. S10: ¹³C NMR spectrum of 2'-methyl-biphenyl-4-carbonitrile

Fig. S11: ¹H NMR spectrum of 4'- methyl-biphenyl-4-carbonitrile

Fig. S12: ¹³C NMR spectrum of 4'- methyl-biphenyl-4-carbonitrile

Fig. S14: ¹³C NMR spectrum of 2',3'- dimethyl-biphenyl-4-carbonitrile

Fig. S16: ¹³C NMR spectrum of 4'-methoxy-biphenyl-4-carbonitrile

Fig. S17: ¹H NMR spectrum of 4'-*t*-butyl-biphenyl-4-carbonitrile

Fig. S18: ¹³C NMR spectrum of 4'-*t*-butyl-biphenyl-4-carbonitrile

Fig. S19: ¹H NMR spectrum of 3'-hydroxy-biphenyl-4-carbonitrile

Fig. S20: ¹³C NMR spectrum of 3'-hydroxy-biphenyl-4-carbonitrile

Fig. S21: ¹H NMR spectrum of 4'-naphthalen-2-yl-benzonitrile

Fig. S22: ¹³C NMR spectrum of 4'-naphthalen-2-yl-benzonitrile

Fig. S23: ¹H NMR spectrum of [1,1';4',1'']terphenyl-4-carbonitrile

Fig. S24: ¹³C NMR spectrum of [1,1';4',1'']terphenyl-4-carbonitrile

Fig. S25: ¹H NMR spectrum of 4'-bromo-biphenyl-4-carbonitrile

Fig. S26: ¹³C NMR spectrum of 4'-bromo-biphenyl-4-carbonitrile

Fig. S27: ¹H NMR spectrum of 4'-dimethylamino-biphenyl-4-carbonitrile

Fig. S28: ¹³C NMR spectrum of 4'-dimethylamino-biphenyl-4-carbonitrile

Fig. S29: ¹H NMR spectrum of 4'-acetyl-biphenyl-4-carbonitrile

Fig. S30: ¹³C NMR spectrum of 4'-acetyl-biphenyl-4-carbonitrile

Fig. S31: ¹ H NMR spectrum of 4-nitrobiphenyl

Fig. S32: ¹³C NMR spectrum of 4-nitrobiphenyl

Fig. S34: ¹³C NMR spectrum of 2-methyl-4'-nitro-biphenyl

Fig. S35: ¹H NMR spectrum of 4'-methyl-4-nitro-biphenyl

Fig. S36: ¹³C NMR spectrum of 4'-methyl-4-nitro-biphenyl

Fig. S37: ¹H NMR spectrum of 2, 3-dimethyl-4'-nitro-biphenyl

Fig. S38: ¹³C NMR spectrum of 2, 3-dimethyl-4'-nitro-biphenyl

Fig. S40: ¹³C NMR spectrum of 2-methoxy-4-nitro-biphenyl

Fig. S41: ¹H NMR spectrum of 4'-*tert*-butyl-4-nitro-biphenyl

Fig. S42: ¹³C NMR spectrum of 4'-*tert*-butyl-4-nitro-biphenyl

Fig. S44: ¹³C NMR spectrum of 4'-nitro-biphenyl-3-ol

Fig. S45: ¹H NMR spectrum of 2-(4-nitro-phenyl)-naphthalene

0,00000000000	
14 4 6 4 11 0 4111 01 0	
DOM - 0 D 10 - 10 -	
TT TO O O O O O O O	00 000
	777 66
1155122112	1 V

Fig. S46: ¹³C NMR spectrum of 2-(4-nitro-phenyl)-naphthalene

Fig. S47: ¹H NMR spectrum of 4-nitro-[1, 1'; 4', 1'']terphenyl

Fig. S48: ¹³C NMR spectrum of 4-nitro-[1, 1'; 4', 1'']terphenyl

Fig. S49: ¹H NMR spectrum of 4'-bromo-4-nitro-biphenyl

Fig. S50: ¹³C NMR spectrum of 4'-bromo-4-nitro-biphenyl

Fig. S51: ¹H NMR spectrum of dimethyl-(4'-nitro-biphenyl-4-yl)-amine

28	49 50 59	92 92	2005	32
r c	0 00 00 10	T () (0)		01
4 4	NNNO	110	FF 19	8
				m
1 1	NV1	111	\checkmark	1. U

Fig. S52: ¹³C NMR spectrum of dimethyl-(4'-nitro-biphenyl-4-yl)-amine

Fig. S54: ¹³C NMR spectrum of 1-(4'-nitro-biphenyl-4-yl)-ethanone