SUPPORTING INFORMATION

Iodine catalyzed one-pot synthesis of highly substituted *N*-methyl pyrrole *via* [3+2] annulation and their *in vitro* evaluation as antibacterial agents

Biguvu Balachandra^a, Sivakumar Shanmugam,^a * Thillaichidambaram Muneeswaran^b, Muthiah Ramakritinan^b

^aDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University,

Madurai - 625 021, Tamil Nadu, India

^bDepartment of Marine and Coastal Studies, School of Energy, Environment and Natural Resorurces, Madurai Kamaraj University, Madurai - 625 021, Tamil Nadu, India

*Email: shivazzen@mkuniversity.org

Table of contents	Page no
I General consideration	2
II Copies of ¹ H& ¹³ C NMR of 4	3-22

I General Remarks

Melting points were determined in open capillary tubes and were uncorrected. IR spectra were taken on a Jasco FT-IR instrument in KBr pellets and reported in cm⁻¹. Mass spectra were performed with Agilent mass spectrometer and recorded in positive & negative mode with an ESI source. The ¹H and ¹³C NMR spectra of the new compounds were measured at 300 MHz and 75MHz in CDCl₃ and DMSO-d₆ with TMS as the internal standard. Chemical shifts are expressed in ppm, coupling constant (*J* values) are given in Hertz (Hz) and spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), td (triplet of doublets). Elemental analyses were carried out with Perkin Elmer 2400 Series II analyzer. Silica gel-G plates (Merck) were used for TLC analysis with a mixture of petroleum ether (60-80 °C) and ethyl acetate as eluent. All chemicals were purchased and used without further purification.

180 170 160 150 140 130 120 110 100 90 f1 (ppm) (75MHZ, CDCl₃) ¹³C NMR spectrum of 4a

(75MHZ, CDCl₃) DEPT-135 4a

C, H- COSY Spectrum of 4a

HMBC Spectrum of 4a

(300MHz, CDCl₃) 1 H NMR spectrum of **4b**

(75MHZ, CDCl₃) 13 C NMR spectrum of **4b**

(75MHZ, CDCl₃) 13 C NMR spectrum of 4c

 $(75MHZ, CDCl_3)$ ¹³C NMR spectrum of **4d**

(75MHZ, CDCl₃) DEPT-135 4d

C, H- COSY Spectrum of 4d

HMBC Spectrum of 4d

(75MHZ, CDCl₃) ¹³C NMR spectrum of **4e**

(300MHz, CDCl₃) 1 H NMR spectrum of **4f**

 $(75MHZ, CDCl_3)$ ¹³C NMR spectrum of **4f**

 $(75MHZ, CDCl_3)$ ¹³C NMR spectrum of **4g**

(300MHz, CDCl₃) 1 H NMR spectrum of **4h**

(75MHZ, CDCl₃) ¹³C NMR spectrum of 4i

(75MHZ, CDCl₃) ¹³C NMR spectrum of **4**j

 $(75MHZ, CDCl_3)$ ¹³C NMR spectrum of 4k

(75MHZ, DMSO-d₆) ¹³C NMR spectrum of **4**l

 $(75MHZ, CDCl_3)$ ¹³C NMR spectrum of **4m**

(75MHZ, CDCl₃) ¹³C NMR spectrum of **4n**