Supporting Information

A new fluorescence and colorimetric sensor for highly selective and sensitive detection of glucose in $\mathbf{1 0 0 \%}$ water

Youming Shen, ${ }^{\text {ab }}$ Xiangyang Zhang, *a Xi Huang, ${ }^{\text {b }}$ Youyu Zhang, ${ }^{* b}$ Chunxiang Zhang, ${ }^{\text {a }}$ Junling Jin, ${ }^{a}$ Xuewen Liu, ${ }^{a}$ Haitao Li, ${ }^{\text {b }}$ and Shouzhuo Yao ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Hunan University of Arts and Science, ChangDe, 415000, PR China E-mail:zhangxiangy06@163.com
${ }^{\mathrm{b}}$ Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China E-mail: zhangyy@hunnu.edu.cn

Fig. S1 UV-vis absorption spectra of probe on interaction with $120 \mu \mathrm{M}$ glucose in the presence (b) and absence (a) of $10 \mu \mathrm{~g} / \mathrm{mL}$ GOx in PBS buffered solution ($50 \mathrm{mM}, \mathrm{pH}$ $=7.0$).

Table S1 Determination of glucose in urine samples spiked with glucose $(\mathrm{n}=3)$

Samples	Test $(\mu \mathrm{M})$	Added $(\mu \mathrm{M})$	Recovery (\%)	RSD (\%)
Blank	Not found	0	-	-
1	32.3	30	106.8	2.13
2	61.8	60	105.7	3.63
3	93.2	90	102.2	1.67

Table S2 Calculated absorption wavelengths ($\lambda_{\text {abs }}$), excitation energies (Ex), oscillator strengths f, and dominant excitation character of compound $\mathbf{1}$ and $\mathbf{1}-\mathrm{H}_{2} \mathrm{O}_{2}$ reaction product. Calculations were performed at $\mathrm{PCM}\left(\mathrm{H}_{2} \mathrm{O}\right)$-TD-B3LYP/6-31+G (d, p) // B3LYP/6-31+G (d, p) level.

Compound	Transition	$\lambda_{\text {abs }}$	Ex	f	composition
$\mathbf{1}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	359.87	3.45 eV	0.363	$\mathrm{H} \rightarrow \mathrm{L}(98 \%)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$	326.77	3.79 eV	0.042	$\mathrm{H}-1 \rightarrow \mathrm{~L}(89 \%)$
$\mathbf{1 - \mathrm { H } _ { 2 } \mathrm { O } _ { 2 }}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	445.35	2.78 eV	0.219	$\mathrm{H} \rightarrow \mathrm{L}(97 \%)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	307.63	4.03 eV	0.056	$\mathrm{H} \rightarrow \mathrm{L}+1(66 \%)$
					$\mathrm{H} \rightarrow \mathrm{L}+2(13 \%)$
					$\mathrm{H}-2 \rightarrow \mathrm{~L}(12 \%)$

Table S3 Calculated emission wavelengths (λ_{em}), emission energies (Em), oscillator strengths f, and dominant excitation character of compound $\mathbf{1}$ and $\mathbf{1}-\mathrm{H}_{2} \mathrm{O}_{2}$ reaction product. Calculations were performed at $\mathrm{PCM}\left(\mathrm{H}_{2} \mathrm{O}\right)$-TD-B3LYP/6-31+G (d, p) // TD-B3LYP/6-31+G (d, p) level.

Compound	Transition	$\lambda_{\text {em }}$	Em	f	Composition
$\mathbf{1}$	$\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$	404.86	3.06 eV	0.346	$\mathrm{H} \rightarrow \mathrm{L}(98 \%)$
	$\mathrm{S}_{3} \rightarrow \mathrm{~S}_{0}$	337.82	3.67 eV	0.026	$\mathrm{H}-1 \rightarrow \mathrm{~L}(89 \%)$
$\mathbf{1 - \mathrm { H } _ { 2 } \mathrm { O } _ { 2 }}$	$\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$	536.93	2.31 eV	0.126	$\mathrm{H} \rightarrow \mathrm{L}(98 \%)$
	$\mathrm{S}_{3} \rightarrow \mathrm{~S}_{0}$	315.69	3.93 eV	0.037	$\mathrm{H} \rightarrow \mathrm{L}+1(71 \%)$
					$\mathrm{H}-2 \rightarrow \mathrm{~L}(11 \%)$

