Supporting Information

A new fluorescence and colorimetric sensor for highly selective and sensitive detection of glucose in 100% water

Youming Shen, ^{ab} Xiangyang Zhang, ^{*a} Xi Huang, ^b Youyu Zhang, ^{*b} Chunxiang Zhang, ^a Junling

Jin, a Xuewen Liu, a Haitao Li, b and Shouzhuo Yaob

^a College of Chemistry and Chemical Engineering, Hunan University of Arts and Science, ChangDe, 415000, PR China E-mail:zhangxiangy06@163.com

^b Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China E-mail: zhangyy@hunnu.edu.cn

Fig. S1 UV-vis absorption spectra of probe on interaction with 120 μ M glucose in the presence (b) and absence (a) of 10 μ g/mL GOx in PBS buffered solution (50 mM, pH = 7.0).

Samples	Test (µM)	Added (µM)	Recovery (%)	RSD (%)
Blank	Not found	0	-	-
1	32.3	30	106.8	2.13
2	61.8	60	105.7	3.63
3	93.2	90	102.2	1.67

Table S1 Determination of glucose in urine samples spiked with glucose (n = 3)

Table S2 Calculated absorption wavelengths (λ_{abs}), excitation energies (Ex), oscillator strengths *f*, and dominant excitation character of compound **1** and **1**-H₂O₂ reaction product. Calculations were performed at PCM (H₂O)-TD-B3LYP/6-31+G (d, p) // B3LYP/6-31+G (d, p) level.

Compound	Transition	λ_{abs}	Ex	f	composition
1	$S_0 \rightarrow S_1$	359.87	3.45 eV	0.363	H→L (98%)
	$S_0 \rightarrow S_2$	326.77	3.79 eV	0.042	H-1→L (89%)
$1-H_2O_2$	$S_0 \rightarrow S_1$	445.35	2.78 eV	0.219	H→L (97%)
	$S_0 \rightarrow S_3$	307.63	4.03 eV	0.056	H→L+1 (66%)
					H→L+2 (13%)
					H-2→L (12%)

Table S3 Calculated emission wavelengths (λ_{em}), emission energies (Em), oscillator strengths *f*, and dominant excitation character of compound **1** and **1**-H₂O₂ reaction product. Calculations were performed at PCM (H₂O)-TD-B3LYP/6-31+G (d, p) // TD-B3LYP/6-31+G (d, p) level.

Compound	Transition	λ_{em}	Em	f	Composition
1	$S_1 \rightarrow S_0$	404.86	3.06 eV	0.346	H→L (98%)
	$S_3 \rightarrow S_0$	337.82	3.67 eV	0.026	H-1→L (89%)
$1-H_2O_2$	$S_1 \rightarrow S_0$	536.93	2.31 eV	0.126	H→L (98%)
	$S_3 \rightarrow S_0$	315.69	3.93 eV	0.037	H→L+1 (71%)
					H-2→L (11%)

