Supporting Information

Furthering the Chemosensing of Silver Nanoclusters for Ions Detection

Weihua Ding,^{a,b} Saipeng Huang,^{a,b} Lingmei Guan,^{a,b} Xianhu Liu,^{a,b} Zhixun Luo*^a

S1. Chemicals

Silver nitrate (99.9995% metals basis) was purchased from Alfa Aesar. Lglutathione (reduced, 99%) and sodium borohydride (99%) were obtained from J&K Scientific Ltd. (Beijing, China). Methanol was purchased from Sinopharm Chemical Reagent Co., Ltd. (HPLC, Beijing, China). Ultrapure water (18.2 M Ω) was used in all experiments.

S2. TEM Characterizations and PAGE analysis

Fig. S1 presents a TEM image and related PAGE analysis of the as-prepared silver nanocluster sample.

Fig. S1. A typical TEM image (a) of the as-prepared silver nanoclusters, and related polyacrylamide gel electrophoresis (PAGE) analysis (b).

Fig. S2. TEM images of (a/b) Ag@SG NCs (2.5 μ g/mL), (c/d) Ag@SG NCs with 1.5 mM Mn²⁺, (e/f) Ag@SG NCs with 0.3 mM of I⁻ ions.

S3. XPS analysis

Fig. S3 shows the XPS patterns of Ag@SG NCS, respectively. X-ray photoelectron spectroscopy (XPS) was performed on the Thermo Scientific ESCALab 250Xi using 200 W monochromated Al K α radiation. The 500 μ m X-ray spot was used for XPS analysis. The base pressure in the analysis chamber was about 3×10^{-10} mbar. Typically the hydrocarbon C1s line at 284.8 eV from adventitious carbon is used for energy referencing.

The auger peak of silver is provided (**Fig S3c**), where the auger parameter is: 368.2 (Binding Energy) + 356.3 (Kinetic Energy) = 724.5 ev, suggesting the presence of Ag(I) state.

Fig. S3. A XPS survey spectrum of Ag@SG NCs (a), the expanded Ag 3d region (b), and the auger peak of silver.

S4. Spectral Analysis

Fig. S4 shows the IR spectrum of the Ag@SG NCS, comparing with the IR of respectively and IR spectra of HSG. It is notable that the obvious peak assigned to S-H group disappeared for the Ag@SG NCs.

Fig. S4. IR spectrum of HSG (a) and the as-prepared Ag@SG NCS (b).

Fig. S5 presents the absorbance spectra of HSG with Mn^{2+} and I⁻ ions, where rare changes exist upon the addition of Mn^{2+} (red curve) and I⁻ (blue curve) ions in comparison with the UV-Vis of only HSG (black line).

Fig. S5. UV-Vis spectra of HSG, HSG plus Mn^{2+} and HSG plus I^- .

S5. Regarding to the sensing mechanism

While we cautiously did not provide a reliable mass spectrum of as-prepared Ag@SG NCs due to the uncertained fragment peaks within several times of repeated mass spectrometry experiments, a fact is that there are always $Ag_nI_x^-$ peaks being observed for the Ag@SG NCs after adding iodine ions. **Fig. S6** presents an ESI-MS spectrum of Ag@SG NCs upon the addition of I⁻, where the mass spectrum displays one peak at m/z =1117.689 and another at m/z =1175.768, corresponding to the ionic $Ag_8I_2^-$ and $Ag_5I_5^-$ respectively. These observed $Ag_nI_x^-$ fragment peaks probably results of $Ag_xI_y(SG)_z(HSG)_r^-$ as proposed in the main text, evidencing that I⁻ ions interacted strongly with the silver core.

Fig S6. An ESI-MS spectrum of the as-prepared Ag@SG NCs (2.5 μ g/mL) after adding I⁻ ions (~2.5 mM). As an example, the inset images display the HOMO orbitals of two Ag₈I₂⁻ isomers.