Supporting Information

New a-Glucosidase Inhibitors from a Marine Sponge-derived Fungus

Aspergillus sp. OUCMDZ-1583

Fandong Kong,[†] Chengying Zhao,[†] Jiejie Hao,[†] Cong Wang,[†] Wei Wang,[†] Xiaolong Huang,[‡] Weiming Zhu^{*,†}

[†] Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; [‡] College of Agriculture, Hainan University, Haikou 570228, China

List of Supporting Information

Bioassay Protocols	
The ITS sequences data of Aspergillus sp. OUCMDZ-1583	
Theory and Calculation Details	S8
Table S1. ¹ H (500 MHz) and ¹³ C (125MHz) NMR data for compounds 19–23	
Figure S1. The ¹ H-NMR spectrum of compound 1 in CDCl ₃	S10
Figure S2. The DEPTQ spectrum of compound 1 in CDCl ₃	S11
Figure S3. The HMQC spectrum of compound 1 in CDCl ₃	S12
Figure S4. The HMBC spectrum of compound 1 in CDCl ₃	S13
Figure S5. The ¹ H- ¹ H COSY spectrum of compound 1 in CDCl ₃	S14
Figure S6. The NOE difference spectrum of compound 1 in CDCl ₃	S15
Figure S7. The ¹ H-NMR spectrum of compound 2 in CDCl ₃	S16
Figure S8. The ¹³ C-NMR spectrum of compound 2 in CDCl ₃	S17
Figure S9. The DEPT spectrum of compound 2 in CDCl ₃	S18
Figure S10. The HMQC spectrum of compound 2 in CDCl ₃	
Figure S11. The ¹ H- ¹ H COSY spectrum of compound 2 in CDCl ₃	S20
Figure S12. The HMBC spectrum of compound 2 in CDCl ₃	S21
Figure S13. The NOE difference spectrum of compound 2 in CDCl ₃	S22
Figure S14. The ¹ H-NMR spectrum of compound 3 and 4 in CDCl ₃	
Figure S15. The ¹³ C-NMR spectrum of compound 3 and 4 in CDCl ₃	S24
Figure S16. The DEPT spectrum of compound 3 and 4 in CDCl ₃	
	S 1

Figure S17. The HMQC spectrum of compound 3 and 4 in CDCl ₃	S26
Figure S18. The ¹ H- ¹ H COSY spectrum of compound 3 and 4 in CDCl ₃	S27
Figure S19. The HMBC spectrum of compound 3 and 4 in CDCl ₃	
Figure S20. The NOE difference spectrum of compound 3 and 4 in CDCl ₃	
Figure S21. The ¹ H-NMR spectrum of compound 5 in CDCl ₃	
Figure S22. The ¹³ C-NMR spectrum of compound 5 in CDCl ₃	
Figure S23. The DEPT spectrum of compound 5 in CDCl ₃	
Figure S24. The HMQC spectrum of compound 5 in CDCl ₃	
Figure S25. The ¹ H- ¹ H COSY spectrum of compound 5 in CDCl ₃	S34
Figure S26. The HMBC spectrum of compound 5 in CDCl ₃	S35
Figure S27. The NOE difference spectrum of compound 5 in CDCl ₃ (I)	S36
Figure S28. The NOE difference spectrum of compound 5 in CDCl ₃ (II)	
Figure S29. The ¹ H-NMR spectrum of compound 6 in DMSO- d_6	S38
Figure S30. The ¹³ C-NMR spectrum of compound 6 in DMSO- d_6	S39
Figure S31. The DEPT spectrum of compound 6 in DMSO- d_6	S40
Figure S32. The HMQC spectrum of compound 6 in DMSO- d_6	S41
Figure S33 . The ¹ H- ¹ H COSY spectrum of compound 6 in DMSO- d_6	S42
Figure S34 . The HMBC spectrum of compound 6 in DMSO- d_6	S43
Figure S35. The NOE difference spectrum of compound 6 in DMSO- d_6 (I)	S44
Figure S36. The NOE difference spectrum of compound 6 in DMSO- d_6 (II)	S45
Figure S37. The ¹ H-NMR spectrum of compound 7 and 8 in CDCl ₃	S46
Figure S38. The ¹³ C-NMR spectrum of compound 7 and 8 in CDCl ₃	S47
Figure S39. The DEPT spectrum of compound 7 and 8 in CDCl ₃	S48
Figure S40. The HMQC spectrum of compound 7 and 8 in CDCl ₃	S49
Figure S41. The ¹ H- ¹ H COSY spectrum of compound 7 and 8 in CDCl ₃	S50
Figure S42. The HMBC spectrum of compound 7 and 8 in CDCl ₃	S51
Figure S43. The NOE difference spectrum of compound 7 and 8 in CDCl ₃	
Figure S44. The ¹ H-NMR spectrum of compound 9 in DMSO- d_6	S53
Figure S45. The ¹³ C-NMR spectrum of compound 9 in DMSO- d_6	S54
Figure S46. The DEPT spectrum of compound 9 in DMSO- d_6	
Figure S47 . The HMQC spectrum of compound 9 in DMSO- d_6	S56
Figure S48 . The ¹ H- ¹ H COSY spectrum of compound 9 in DMSO- d_6	S57
Figure S49. The HMBC spectrum of compound 9 in DMSO- d_6	S58
Figure S50. The ¹ H-NMR spectrum of compound 10 in DMSO- d_6	
Figure S51. The ¹³ C-NMR spectrum of compound 10 in DMSO- d_6	S60

Figure S52. The DEPT spectrum of compound 10 in DMSO- d_6	S61
Figure S53. The HMQC spectrum of compound 10 in DMSO- d_6	
Figure S54 . The ¹ H- ¹ H COSY spectrum of compound 10 in DMSO- d_6	
Figure S55. The HMBC spectrum of compound 10 in DMSO- d_6	
Figure S56. The ¹ H-NMR spectrum of compound 11 in DMSO- d_6	
Figure S57. The ¹³ C-NMR spectrum of compound 11 in DMSO- d_6	
Figure S58. The DEPT spectrum of compound 11 in DMSO- <i>d</i> ₆	
Figure S59. The HMQC spectrum of compound 11 in DMSO-d ₆	
Figure S60 . The ¹ H- ¹ H COSY spectrum of compound 11 in DMSO- d_6	S69
Figure S61. The HMBC spectrum of compound 11 in DMSO- d_6	S70
Figure S62. The ¹ H-NMR spectrum of compound 12 in DMSO- d_6	
Figure S63. The ¹³ C-NMR spectrum of compound 12 in DMSO- d_6	
Figure S64. The DEPT spectrum of compound 12 in DMSO- d_6	
Figure S65. The HMQC spectrum of compound 12 in DMSO- d_6	S74
Figure S66 . The ¹ H- ¹ H COSY spectrum of compound 12 in DMSO- d_6	
Figure S67. The HMBC spectrum of compound 12 in DMSO- d_6	S76
Figure S68. The NOESY spectrum of compound 12 in DMSO-d	S77
Figure S69. The ¹ H-NMR spectrum of compound 13 in DMSO- d_6	
Figure S70. The ¹³ C-NMR spectrum of compound 13 in DMSO- d_6	
Figure S71. The DEPT spectrum of compound 13 in DMSO- d_6	
Figure S72. The HMQC spectrum of compound 13 in DMSO- d_6	
Figure S73 . The ¹ H- ¹ H COSY spectrum of compound 13 in DMSO- d_6	
Figure S74. The HMBC spectrum of compound 13 in DMSO- d_6	
Figure S75. The NOESY spectrum of compound 13 in DMSO- <i>d</i>	
Figure S76. The ¹ H-NMR spectrum of compound 14 in DMSO- d_6	
Figure S77. The ¹³ C-NMR spectrum of compound 14 in DMSO- d_6	
Figure S78. The DEPT spectrum of compound 14 in DMSO- d_6	
Figure S79. The HMQC spectrum of compound 14 in DMSO- d_6	
Figure S80 . The ¹ H- ¹ H COSY spectrum of compound 14 in DMSO- d_6	
Figure S81. The HMBC spectrum of compound 14 in DMSO- d_6	
Figure S82. The ¹ H-NMR spectrum of compound 15 in DMSO- d_6	
Figure S83. The ¹³ C-NMR spectrum of compound 15 in DMSO- d_6	
Figure S84. The DEPT spectrum of compound 15 in DMSO- d_6	
Figure S85 . The HMQC spectrum of compound 15 in DMSO- d_6	
Figure S86 . The ¹ H- ¹ H COSY spectrum of compound 15 in DMSO- d_6	

Figure S87. The HMBC spectrum of compound 15 in DMSO- d_6	
Figure S88. The ¹ H-NMR spectrum of compound 16 in DMSO- d_6	
Figure S89. The ¹³ C-NMR spectrum of compound 16 in DMSO- d_6	
Figure S90. The DEPT spectrum of compound 16 in DMSO- d_6	S99
Figure S91. The HMQC spectrum of compound 16 in DMSO- d_6	S100
Figure S92 . The ¹ H- ¹ H COSY spectrum of compound 16 in DMSO- d_6	S101
Figure S93. The HMBC spectrum of compound 16 in DMSO- d_6	S102
Figure S94. The ¹ H-NMR spectrum of compound 17 in DMSO- d_6	S103
Figure S95. The ¹³ C-NMR spectrum of compound 17 in DMSO- d_6	S104
Figure S96. The DEPT spectrum of compound 17 in DMSO- d_6	S105
Figure S97. The HMQC spectrum of compound 17 in DMSO- d_6	S106
Figure S98 . The ¹ H- ¹ H COSY spectrum of compound 17 in DMSO- d_6	S107
Figure S99. The HMBC spectrum of compound 17 in DMSO- d_6	S108
Figure S100. The ¹ H-NMR spectrum of compound 18 in CDCl ₃	S109
Figure S101. The ¹³ C-NMR spectrum of compound 18 in CDCl ₃	S110
Figure S102. The DEPT spectrum of compound 18 in CDCl ₃	S111
Figure S103. The HMQC spectrum of compound 18 in CDCl ₃	S112
Figure S104. The ¹ H- ¹ H COSY spectrum of compound 18 in CDCl ₃	S113
Figure S105. The HMBC spectrum of compound 18 in CDCl ₃	S114
Figure S106. The NOESY spectrum of compound 18 in CDCl ₃	S115
Figure S107. X-ray data and structure of compound 20	S116
Figure S108. The ¹ H-NMR spectrum of compound 12a in CDCl ₃	S117
Figure S109. The DEPTQ spectrum of compound 12a in CDCl ₃	S118
Figure S110. The HMQC spectrum of compound 12a in CDCl ₃	S119
Figure S111. The ¹ H- ¹ H COSY spectrum of compound 12a in CDCl ₃	S120
Figure S112. The HMBC spectrum of compound 12a in CDCl ₃	S121
Figure S113. The ¹ H-NMR spectrums of compound 2a and 2b in CDCl ₃	S122
Figure S114. The ¹ H-NMR spectrums of compound 3a and 3b in CDCl ₃	
Figure S115. The ¹ H-NMR spectrums of compound 5a and 5b in CDCl ₃	S124
Figure S116. The ¹ H-NMR spectrums of compound 6a and 6b in CDCl ₃	S125
Figure S117. The ¹ H-NMR spectrums of compound 7a and 7b in CDCl ₃	S126
Figure S118. The ¹ H-NMR spectrums of compound 12aa and 12ab in CDCl ₃	S127
Figure S119. The HPLC analysis and ESIMS of the reaction liquid of 12 to 12a	S128
Figure S120. The HPLC analysis of compound 16 and synthetic 15	S129
Figure S121. The HPLC analysis of natural 14 and synthetic 14	S129

Anti-influenza A Virus (H1N1) Assay

The antiviral activity against H1N1 was evaluated by the CPE inhibition assay.⁶ Confluent MDCK cell monolayers were firstly incubated with influenza virus (A/Puerto Rico/8/34 (H1N1), PR/8) at 37 °C for 1 h. After removing the virus dilution, cells were maintained in infecting media (RPMI 1640, 4 μ g/mL of trypsin) containing different concentrations of test compounds at 37 °C. After 48 h incubation at 37 °C, the cells were fixed with 100 μ L of 4% formaldehyde for 20 min at room temperature. After removal of the formaldehyde, the cells were stained with 0.1% crystal violet for 30 min. The plates were washed and dried, and the intensity of crystal violet staining for each well was measured in a microplate reader (Bio-Rad, USA) at 570 nm. The IC₅₀ value was calculated as the compound concentration required inhibiting influenza virus yield at 48 h post-infection by 50%. Ribavirin was used as the positive control with an IC₅₀ value of 137.3±0.4 μ M.

a-Glucosidase Inhibitory Effect Assay

The inhibitory effects were assayed as described preciously.²² The sample was dissolved in sodium phosphate buffer (PBS, pH 6.8) at three concentrations. A volume of 10 μ L of the sample solution, 20 μ L of PBS and 20 μ L of 2.5 *m*M *p*-nitrophenyl- α -D-glucopyranoside (PNPG) solution (in phosphate buffer) were mixed in a 96-well microplate and incubated at 37 °C for 5 min. A volume of 10 μ L of α -glucosidase diluted to 0.2 U/mL by 0.01 M PBS was then added to each well. After incubating at 37 °C for 15 min, the absorbance at 405 nm was recorded by a Spectra max 190 micro plate reader (Molecular Devices Inc.). The blank was prepared by adding phosphate buffer instead of the α -glucosidase and acarbose was used as a positive control. Blank readings (no enzyme) were subtracted from each well and results were compared to the control. The inhibition (%) was calculated as $[1-(OD_{sample}/OD_{control})] \times 100 \%$. The IC₅₀ value was calculated as the compound concentration that is required for 50% inhibition and the IC₅₀ value of the acarbose was 0.95 *m*M.

Antimicrobial Assays

The antimicrobial activities against *Escherichia coli*, *Enterobacter aerogenes*, *Pseudomonas aeruginosa*, *Bacillus subtilis*, *Staphylococcus aureus*, and *Candida albicans* were evaluated by an agar dilution method.²³ The tested strains were cultivated in LB agar plates for bacteria and in YPD agar plates for *C. albicans* at 37 °C. Compounds **1–23** and positive controls (ciprofloxacin lactate for bacteria and ketoconazole for *C. albicans*) were dissolved in MeOH at different concentrations from 100 to 0.05 μ g/mL by the continuous 2-fold dilution methods. A 10 μ L quantity of test solution was

absorbed by a paper disk (5 mm diameter) and placed on the assay plates. After 24 h incubation, zones of inhibition (mm in diameter) were recorded. The minimum inhibitory concentrations (MICs) were defined as the lowest concentration at which no microbial growth could be observed.

Cytotoxic Assays

Cytotoxicity was assayed by the MTT²⁴ and CCK-8 methods.²⁵ In the MTT assay, A549 and MCF-7 cell lines was grown in RPMI-1640 supplemented with 10% FBS under a humidified atmosphere of 5% CO₂ and 95% air at 37 °C, respectively. Cell suspension, 100 μ L, at a density of 3 × 10⁴ cell mL⁻¹ was plated in 96-well microtiter plates, allowed to attach overnight, and then exposed to varying concentrations (10⁻⁵-10⁻¹² M) of compounds for 72 h. The MTT solution (20 μ L, 5 mg/mL in IPMI-1640 medium) was then added to each well and incubated for 4 h. Old medium containing MTT was then gently replaced by DMSO and pipetted to dissolve any formazan crystals formed. Absorbance was then determined on a Spectra Max Plus plate reader at 540 nm. In the CCK-8 assay, K562 cell line was grown in RPMI-1640 supplemented with 10% FBS under a humidified atmosphere of 5% CO₂ and 95% air at 37 °C. Cell suspension, 100 μ L, at a density of 5 × 10⁵ cell mL⁻¹ was plated in 96-well microtiter plates and then exposed to varying concentrations (10⁻⁵-10⁻¹² M) of compounds after cultivation for 24 h. Three days later, 10 μ L of CCK-8 solution was added 4 h before detection. Then the absorbency (A450 value) was measured, and the growth rates of cells were computed.

ITS sequences of Aspergillus sp. OUCMDZ-1583

CGTAGGTGAACCTGCGGAAGGATCATTACTGAGTGCGGGCTGCCTCCGGGCGCCCAACCTCCCACCCG TGAATACCTAACACTGTTGCTTCGGCGGGGAACCCCCTCGGGGGGCGAGCCGCGGGGACTACTGAACT TCATGCCTGAGAGTGATGCAGTCTGAGTCTGAATATAAAATCAGTCAAAACTTTCAACAATGGATCTCT TGGTTCCGGCATCGATGAAGAACGCAGCGAACTGCGATAAGTAATGTGAATTGCAGAATTCAGTGAAT CATCGAGTCTTTGAACGCACATTGCGCCCCCTGGCATTCCGGGGGGGCATGCCTGTCCGAGCGTCATTGC TGCCCATCAAGCCCGGCTTGTGTGTGGGTCGTCGTCCCCCCCGGGGGGACGGGCCCGAAAGGCAGC GGCGGCACCGTGTCCGGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCGACTAGGGCCGGGCG CCAGCCGACGTCTCCAACCATTTTCTTCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTA AGCATATCAATAAGCGGAG

Neighbor-joining phylogenetic tree of strain OUCMDZ-1583 based on ITS gene sequences (ca. 565 bp). The values at each node represent the bootstrap values from 1000 replicates, and the scale bar represents 0.0005 substitutions per nucleotide. Phylogenetic analyses were conducted in MEGA4.

Theory and Calculation Details. The calculations were performed by using the density functional theory (DFT) as carried out in the Gaussian 03.^{S1} The preliminary conformational distributions search was performed by HyperChem 7.5 software. All ground-state geometries were optimized at the B3LYP/6-31G(d) level. Solvent effects of methanol solution were evaluated at the same DFT level by using the SCRF/PCM method. ^{S2} TDDFT ^{S3} at B3LYP/6-31G(d) was employed to calculate the electronic excitation energies and rotational strengths in methanol.

(S1) Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

(S2) (a) S. Miertus and J. Tomasi, Chem. Phys., 1982, **65**, 239–245. (b) J. Tomasi and M. Persico, Chem. Rev., 1994, **94**, 2027–2094. (c) R. Cammi and J. Tomasi, J.Comp.Chem., 1995, **16**, 1449–1458.

(S3) (a) M. E. Casida, In Recent Advances in Density Functional Methods, part I; D. P. Chong, World Scientific: Singapore, 1995; pp 155–192. (b) E. K. U. Gross, J. F. Dobson and M. Petersilka, Top. Curr. Chem., 1996, 181, 81–172. (c) E. K. U. Gross and W. Kohn, Adv. Quantum Chem., 1990, 21, 255–291. (d) E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997–1000.

position	19 ^a		20 ^b		21 ^b		22 ^a		23 ^a	
	$\delta_{ m C}$	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	$\delta_{ m H}(J ext{ in Hz})$	$\delta_{ m C}$	$\delta_{\rm H}(J \text{ in Hz})$
1	128.1, C		168.0, C		167.8, C		170.2, C		169.6, C	
2	148.9, C									
3	195.1, C		81.7, CH	5.05, br d	81.2, CH	5.03, m	77.5, CH	4.73, m	79.8, CH	4.67, m
4	52.5, CH	3.47, d (4.0)	74.5, CH	4.52, br d	74.4, CH	4.52, d (3.0)	42.8, CH ₂	2.90, dd (16.0, 4.0); 2.83, dd (16.0, 12.0)	65.7, CH	4.46, br d (2.5)
4a			127.0, C		131.2, C		131.7, C		136.1, C	
5	55.8, CH	3.74, d (1.6, 4.0)	104.2, CH	6.59, s	104.4, CH	6.57, s	103.0, CH	6.51, s	103.9, CH	6.72, s
6	61.9, CH	4.86, d (1.6)	152.3, C		158.6, C		154.0, C		158.8, C	
7	128.1, CH	6.60, d (16.2)	134.3, C		137.2, C		132.8, C		139.0, C	
8	136.2, CH	6.47, dq (16.2, 6.8)	149.5, C		156.2, C		150.6, C		155.2, C	
8a			101.8, C		102.0, C		102.6, C		102.3, C	
9	19.7, CH	1.87, d (6.8)	19.2, CH ₂	2.57, m; 2.13, m	19.2, CH ₂	2.57, m; 2.13, m	33.0, CH ₂	1.81, ddd (14.7, 10.4, 2.8); 1.56, ddd (14.7, 10.8, 3.6)	38.6, CH ₂	1.94, m; 1.58,m
10	53.3, CH ₂	4.07, d (11.3); 4.27, d (11.3)	78.7, CH	4.09, m	78.7, CH	4.10, m	65.7, CH	3.70, m	66.1, CH	3.70, m
11			39.1, CH ₂	1.67, m; 1.54, m	39.8, CH ₂	1.67, m; 1.52, m	40.4, CH ₂	1.38, m; 1.35, m	$40.5, CH_2$	1.40, m; 1.38, m
12			38.1, CH ₂	1.39, m; 1.34, m	38.0, CH ₂	1.40, m; 1.31, m	18.9, CH ₂	1.33, m; 1.30, m	18.9, CH ₂	1.32, m; 1.37m
13			14.1, CH ₃	0.88, t (7.5)	19.2, CH ₃	0.89, t (7.4)	14.4, CH ₃	0.86, t (7.2)	14.6, CH ₃	0.89, t (7.1)
6-OCH ₃			56.4, CH ₃	3.93, s	56.2, CH ₃	3.87, s	56.5, CH ₃	3.83, s	56.7, CH	3.88, s
7-OCH ₃					60.7, CH ₃	3.93, s			60.5, CH ₃	3.70, s
8-OH				11.11, s		11.3, br s		10.87, br s		11.03, br s

Table S1.	^I H (500 MHz)) and ^{13}C ((125 MHz)	NMR Data	of Compounds	19–23
-----------	--------------------------	------------------	-----------	----------	--------------	-------

^a recorded in DMSO- d_6 . ^b recorded in CDCl₃.

Figure S2. The DEPTQ spectrum of compound 1 in CDCl₃

Figure S3. The HSQC spectrum of compound 1 in CDCl₃

Figure S4. The HMBC spectrum of compound 1 in CDCl₃

Figure S5. The ¹H-¹H COSY spectrum of compound 1 in CDCl₃

Figure S6. The NOE difference spectrum of compound 1 in CDCl₃

Figure S7. The ¹H-NMR spectrum of compound **2** in CDCl₃

Figure S9. The DEPT spectrum of compound 2 in CDCl₃

Figure S13. The NOE difference spectrum of compound 2 in CDCl₃

Figure S14. The ¹H-NMR spectrum of compounds 3 and 4 in CDCl₃

S23

Figure S16. The DEPT spectrum of compounds 3 and 4 in CDCl₃

S25

Figure S17. The HMQC spectrum of compounds 3 and 4 in CDCl₃

Figure S18. The ¹H-¹H COSY spectrum of compounds 3 and 4 in CDCl₃

Figure S21. The ¹H-NMR spectrum of compound 5 in CDCl₃

Figure S22. The ¹³C-NMR spectrum of compound 5 in CDCl₃

Figure S24. The HMQC spectrum of compound 5 in CDCl₃

Figure S25. The ¹H-¹H COSY spectrum of compound **5** in CDCl₃

Figure S26. The HMBC spectrum of compound 5 in CDCl₃

Figure S27. The NOE difference spectrum of compound 5 in CDCl₃ (I)

Figure S29. The ¹H-NMR spectrum of compound 6 in DMSO- d_6

Figure S31. The DEPT spectrum of compound 6 in DMSO- d_6

-10 -20 -20 -30 -40 -60 -60 -60 -100 -110 -1100 -1100 -1100 -1110 -1120 -1100 -1120 0ò-~ ŌН ß 0 8 MIL Ţ gHSQCAD_01 KFD-3-18

Figure S32. The HMQC spectrum of compound 6 in DMSO- d_6

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 f2 (ppm)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Figure S33. The ¹H-¹H COSY spectrum of compound **6** in DMSO- d_6

S42

Figure S34. The HMBC spectrum of compound 6 in DMSO- d_6

Figure S36. The NOESY difference spectrum of compound 6 in DMSO- d_6 (II)

S45

Figure S37. The ¹H-NMR spectrum of compounds 7 and 8 in CDCl₃

Figure S38. The ¹³C-NMR spectrum of compounds 7 and 8 in CDCl₃

Figure S39. The DEPT spectrum of compounds 7 and 8 in CDCl₃

Figure S40. The HMQC spectrum of compounds 7 and 8 in CDCl₃

Figure S41. The ¹H-¹H COSY spectrum of compounds 7 and 8 in CDCl₃

Figure S42. The HMBC spectrum of compounds 7 and 8 in CDCl₃

Figure S44. The ¹H-NMR spectrum of compound 9 in CDCl₃

Figure S45. The ¹³C-NMR spectrum of compound 9 in CDCl₃

Figure S46. The DEPT spectrum of compound 9 in CDCl₃

Figure S47. The HMQC spectrum of compound 9 in CDCl₃

Figure S48. The ¹H-¹H COSY spectrum of compound 9 in CDCl₃

Figure S49. The HMBC spectrum of compound 9 in CDCl₃

Figure S50. The ¹H-NMR spectrum of compound **10** in DMSO- d_6

Figure S51. The ¹³C-NMR spectrum of compound 10 in DMSO- d_6

Figure S52. The DEPT spectrum of compound 10 in DMSO- d_6

Figure S53. The HMQC spectrum of compound 10 in DMSO- d_6

Figure S54. The ¹H-¹H COSY spectrum of compound **10** in DMSO- d_6

Figure S55. The HMBC spectrum of compound 10 in DMSO- d_6

Figure S56. The ¹H-NMR spectrum of compound **11** in DMSO- d_6

Figure S57. The ¹³C-NMR spectrum of compound 11 in DMSO- d_6

Figure S58. The DEPT spectrum of compound 11 in DMSO- d_6

Figure S59. The HMQC spectrum of compound 11 in DMSO- d_6

Figure S60. The ¹H-¹H COSY spectrum of compound **11** in DMSO- d_6

Figure S62. The ¹H-NMR spectrum of compound **12** in DMSO- d_6

Figure S63. The ¹³C-NMR spectrum of compound **12** in DMSO- d_6
Figure S64. The DEPT spectrum of compound 12 in DMSO- d_6

-110 -140-100-120-130-90 -10 -30 -40 -50 -60 -70 -80 -20 HΟ 0 0 HO 3.0 0 4.0 (ppm) 20130710 gradient enhanced HNQC with X-decoupling 0 -8

Figure S65. The HMQC spectrum of compound 12 in DMSO- d_6

1.0

1.5

2.0

2.5

3.5

f24.5

5.0

5.5

6.0

6.5

7.0

Figure S66. The ¹H-¹H COSY spectrum of compound **12** in DMSO- d_6

Figure S68. The NOESY spectrum of compound 12 in DMSO- d_6

Figure S69. The ¹H-NMR spectrum of compound **13** in DMSO- d_6

Figure S70. The ¹³C-NMR spectrum of compound 13 in DMSO- d_6

Figure S71. The DEPT spectrum of compound 13 in DMSO- d_6

Figure S72. The HMQC spectrum of compound 13 in DMSO- d_6

Figure S73. The ¹H-¹H COSY spectrum of compound **13** in DMSO- d_6

Figure S74. The HMBC spectrum of compound 13 in DMSO- d_6

Figure S75. The NOESY spectrum of compound 13 in DMSO- d_6

Figure S77. The ¹³C-NMR spectrum of compound 14 in DMSO- d_6

Figure S78. The DEPT spectrum of compound 14 in DMSO- d_6

Figure S79. The HMQC spectrum of compound 14 in DMSO- d_6

Figure S80. The ¹H-¹H COSY spectrum of compound **14** in DMSO- d_6

Figure S81. The HMBC spectrum of compound 14 in DMSO- d_6

Figure S82. The ¹H-NMR spectrum of compound **15** in DMSO- d_6

Figure S83. The ¹³C-NMR spectrum of compound **15** in DMSO- d_6

Figure S84. The DEPT spectrum of compound 15 in DMSO- d_6

Figure S85. The HMQC spectrum of compound 15 in DMSO- d_6

Figure S86. The ¹H-¹H COSY spectrum of compound **15** in DMSO- d_6

Figure S87. The HMBC spectrum of compound 15 in DMSO- d_6

Figure S88. The ¹H-NMR spectrum of compound **16** in DMSO- d_6

Figure S89. The ¹³C-NMR spectrum of compound **16** in DMSO- d_6

Figure S90. The DEPT spectrum of compound 16 in DMSO- d_6

Figure S91. The HMQC spectrum of compound 16 in DMSO-*d*₆

Figure S92. The ¹H-¹H COSY spectrum of compound **16** in DMSO- d_6

Figure S93. The HMBC spectrum of compound 16 in DMSO- d_6

Figure S94. The ¹H-NMR spectrum of compound **17** in DMSO- d_6

Figure S95. The ¹³C-NMR spectrum of compound 17 in DMSO- d_6

Figure S97. The HMQC spectrum of compound 17 in DMSO- d_6

Figure S100. The ¹H-NMR spectrum of compound 18 in CDCl₃

Figure S101. The ¹³C-NMR spectrum of compound 18 in CDCl₃

Figure S102. The DEPT spectrum of compound 18 in CDCl₃

Figure S105. The HMBC spectrum of compound 18 in CDCl₃

Figure S106. The NOESY spectrum of compound 18 in CDCl₃

Figure S107. X-ray data and structure of compound 20

7-O-Demethylmonocerin (20): Colorless Monoclinic crystals from MeOH-H₂O (1:1, v/v) with molecular formula of C₁₅H₁₈O₆; space group *P*2(1) with *a* = 7.7687(7) Å, *b* = 7.4049(5) Å, *c* = 12.6454(9) Å, *V* = 703.08(9) Å³, *Z* = 2, $D_{calcd} = 1.390 \text{ Mg/m}^3$, $\mu = 0.906 \text{ mm}^{-1}$, and *F*(000) = 312; crystal size: $0.32 \times 0.27 \times 0.07 \text{ mm}^3$. *T* = 293(2) K. Absolute structure parameter: 0.0(3). These data were obtained on a Bruker APEX DUO area detector diffractometer with graphite monochromatic Cu-K\alpha radiation ($\lambda = 1.54178$ Å) and have been deposited in the Cambridge Crystallographic Data Centre with supplementary publication No 995362. The structure was solved by direct methods (SHELXS-97) and expanded using Fourier techniques (SHELXL-97). The final cycle of full-matrix least-squares refinement was based on 1549 unique reflections ($2\theta < 50^{\circ}$) and 193 variable parameters and converged with unweighted and weighted agreement factors of R1 = 0.0409, wR2 = 0.1015, and *R* = 0.0499 for I > $2\sigma(I)$ data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

ORTEP drawing of 20

Figure S108. The ¹H-NMR spectrum of compound 12a in CDCl₃

Figure S109. The DEPTQ spectrum of compound 12a in CDCl₃

Figure S110. The HMQC spectrum of compound 12a in CDCl₃

Figure S111. The ¹H-¹H COSY spectrum of compound 12a in CDCl₃

Figure S112. The HMBC spectrum of compound 12a in CDCl₃

0.

Figure S116. The ¹H-NMR spectrums of compounds 6a and 6b in CDCl₃

0

Figure S117. The ¹H-NMR spectrums of compounds 7a and 7b in CDCl₃

490

460 470 480

500 510 520

530 540 560

Figure S120. The HPLC analysis of compound 16 and synthetic 15 (ODS, 10% MeOH/H₂O, v/v).

Figure S121. The HPLC analysis of 14 and the synthetic 14 (ODS, 20% MeOH/H₂O, v/v).

Figure S122. The HPLC analysis of 15 and the synthetic 15 (ODS, 15% MeOH/H₂O, v/v).

