Supporting Information

Synergistic effect of donors on the tetracyanobutadine (TCBD)

substituted ferrocenyl pyrenes

Bhausaheb Dhokale, Thaksen Jadhav, Shaikh M. Mobin, and Rajneesh Misra*

*E-mail: *rajneeshmisra@iiti.ac.in*

Department of Chemistry, Indian Institute of Technology Indore, Indore- 452 017, India.

Table of Contents

I.	Photophysical Data S3
II.	Electrochemical Data······S3
III.	Crystallographic dataS5
IV.	Theoretical Calculations S7
v.	Copies of ¹ H NMR, ¹³ C NMR and HRMS Spectra

References······S24	References·····	•••••		•S24
---------------------	-----------------	-------	--	------

Photophysical Data

Figure S1 Photographs of ferrocenyl substituted pyrenes 2, 3a - 3c, 4a and 4b in 10^{-4} M dichloromethane solution in day light.

Electrochemical Data

Figure S2 Overlaid CV and DPV plots of ferrocenyl pyrene 2.

Figure S3 Overlaid CV and DPV plots of ferrocenyl pyrene 3a.

Figure S4 Overlaid CV and DPV plots of ferrocenyl pyrene 3b.

Figure S5 Overlaid CV and DPV plots of ferrocenyl pyrene 3c.

Figure S6 Overlaid CV and DPV plots of ferrocenyl pyrene 4b.

Single Crystal X-ray Diffraction Studies.

Single crystal X-ray structural studies of ferrocenyl substituted pyrene 3b were performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 293(2) K using graphite-monochromated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on $F^{2.1}$. The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally $1.2U_{eq}$ of their parent atoms. The crystal, and refinement data are summarized in Table 1. The CCDC numbers 1054932 for 3b contains the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

BODIPY	3b
Empirical formula	C ₃₄ H ₂₂ Fe
Formula weight	486.37
Temperature/K	150(2)
Crystal system	Monoclinic
Space group	P 21/n
Unit cell dimensions	
a/Å	a = 7.7281(2)
α/°	90
b/ Å	b = 10.2249(3)
β/°	90.696(3)
c/ Å	c = 29.6634(12)
$\gamma/^{\circ}$	90
Volume/ Å ³	2343.80(13)
Z	4
Calculated density/ Mg/m ³	1.378
Absorption coefficient/mm ⁻¹	0.665
<i>F</i> (000)	1008
Crystal size/mm	0.26 x 0.21 x 0.18
θ range from data collection/°	3.30 to 24.99
Deflections collected/unique	16811 / 4114
Kellections conected/unique	[R(int) = 0.0372]
Absorption connection	Semi-empirical from
Absorption correction	equivalents
Data/restraints/parameters	4114 / 0 / 316
Goodness-of-fit on F^2	1.069
Final <i>P</i> indices $[I > 2\pi (D)]$	$R_1 = 0.0353,$
Final K indices $[I > 20 (I)]$	$wR_2 = 0.0817$
<i>P</i> indiana (all data)	$R_1 = 0.0493,$
K lindices (all data)	$wR_2 = 0.0895$
Largest diff. peak and hole/e Å-3	0.256 and -0.259
CCDC number	1054932

Table S1. Crystal data and structure refinement parameters

Figure S7 Frontier molecular orbital plots of ferrocenyl substituted pyrenes 2, 3a – 3c, 4a, and 4b calculated at B3LYP/6-31G* level for C, N, H and Lanl2DZ level for Feⁱ

Ferrocenyl	substituted	pyrene	2
2			

Center	Atomic	Atomic	Coord	dinates (Anga	stroms)
Number	Number	туре	Δ	Ĩ	Ъ
1	6	0	-4.882346	-0.020568	1.370280
2	26	0	-3.265234	-0.190156	0.073917
3	б	0	-5.102465	0.777197	0.207120
4	б	0	-3.692767	0.446463	2.007511
5	б	0	-4.048621	1.737499	0.125437
6	б	0	-3.178025	1.532973	1.238992
7	б	0	-3.024154	-2.205621	-0.340623

8	6	0	-1.810359	-1.666562	0.181398
9	6	0	-1.355236	-0.624627	-0.696554
10	б	0	-2.325689	-0.519423	-1.751407
11	1	0	-5.906575	0.653149	-0.505194
12	1	0	-3.242324	0.029636	2.897773
13	1	0	-3.921637	2.473074	-0.657254
14	1	0	-2.263380	2.073443	1.439444
15	б	0	-3.342653	-1.495022	-1.536610
16	1	0	-3.618909	-2.985862	0.114085
17	1	0	-1.329804	-1.963618	1.103056
18	1	0	-2.278505	0.183744	-2.571795
19	1	0	-4.215718	-1.648779	-2.155841
20	1	0	-5.490107	-0.855034	1.692184
21	б	0	-0.121865	0.188633	-0.586470
22	6	0	1.149309	-0.393284	-0.333549
23	б	0	-0.201567	1.577647	-0.779298
24	6	0	2.299609	0.455008	-0.216609
25	6	0	1.352830	-1.814378	-0.217140
26	6	0	0.912344	2.400078	-0.686545
27	1	0	-1.174314	2.014037	-0.981548
28	б	0	3.584849	-0.104544	0.065021
29	6	0	2.175529	1.867229	-0.387488
30	б	0	2.579453	-2.345677	0.042547
31	1	0	0.505651	-2.473790	-0.360249
32	1	0	0.808419	3.472659	-0.829434
33	б	0	3.738325	-1.516541	0.210181
34	б	0	4.727801	0.744565	0.198598
35	6	0	3.340419	2.695753	-0.251463
36	1	0	2.700749	-3.423422	0.117241
37	6	0	5.008499	-2.045902	0.491033
38	б	0	5.977907	0.170315	0.482761
39	6	0	4.559674	2.161508	0.032867
40	1	0	3.225534	3.768940	-0.380685
41	6	0	6.114223	-1.208948	0.628181
42	1	0	5.120529	-3.121590	0.598975
43	1	0	6.844472	0.818080	0.586433
44	1	0	5.432372	2.801266	0.135316
45	1	0	7.089473	-1.634524	0.846638

-1125.1046585 Hartree

Ferrocenyl substituted pyrene **3a**

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	5.766782	0.094399	1.533783
2	26	0	4.287638	-0.183476	0.098395

3	б	0	5.381088	-1.279355	1.486795
4	б	0	4.610710	0.866239	1.862633
5	б	0	3.986625	-1.356603	1.786767
б	б	0	3.511427	-0.030693	2.019853
7	б	0	5.031866	0.447245	-1.739571
8	6	0	3.857340	1.179514	-1.407763
9	6	0	2.768770	0.245528	-1.266507
10	6	0	3.306627	-1.070684	-1.501984
11	1	0	6.024168	-2.111285	1.234414
12	1	0	4.568106	1.943469	1.946252
13	1	0	3.388248	-2.257100	1.802489
14	1	0	2.486963	0.249655	2.223110
15	б	0	4.692522	-0.939109	-1.797915
16	1	0	6.017737	0.865832	-1.887622
17	1	0	3.780599	2.248552	-1.269140
18	1	0	2.743215	-1.991212	-1.446616
19	1	0	5.376608	-1.752185	-1.997623
20	б	0	1.419904	0.562724	-0.969670
21	б	0	0.258956	0.837304	-0.725070
22	б	0	-1.089925	1.184588	-0.440152
23	б	0	-2.106839	0.192059	-0.355039
24	б	0	-1.426988	2.537868	-0.232446
25	б	0	-3.444735	0.590875	-0.055985
26	6	0	-1.834913	-1.201933	-0.559542
27	б	0	-2.727706	2.920368	0.055964
28	1	0	-0.642587	3.284479	-0.302606
29	6	0	-4.478030	-0.391193	0.037406
30	б	0	-3.758389	1.969091	0.152337
31	6	0	-2.821543	-2.137575	-0.471498
32	1	0	-0.815756	-1.494462	-0.790016
33	1	0	-2.960001	3.970537	0.211643
34	6	0	-4.176648	-1.771529	-0.169847
35	6	0	-5.818203	0.003578	0.339083
36	6	0	-5.112827	2.335709	0.452587
37	1	0	-2.594002	-3.188476	-0.630893
38	6	0	-5.208835	-2.719778	-0.072391
39	6	0	-6.816526	-0.980761	0.426800
40	6	0	-6.097274	1.398134	0.542477
41	1	0	-5.338955	3.387378	0.608452
42	6	0	-6.512547	-2.325802	0.222921
43	1	0	-4.978315	-3.770081	-0.230367
44	1	0	-7.835545	-0.680712	0.656614
45	1	0	-7.118272	1.692504	0.771025
46	1	0	-7.298092	-3.072539	0.294848
47	1	0	6.753170	0.484767	1.323606

-1201.2639259 Hartree

Ferrocenyl substituted pyrene **3b**

Center	Atomic	Atomic Atomic		Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	 б	0	0.864643	2.416220	-0.315537	
2	6	0	0.707433	1.021853	-0.439119	
3	6	0	2.131842	2.981854	-0.430907	
4	6	0	1.843164	0.223824	-0.680209	
5	б	0	3.249082	2.181462	-0.662212	
6	1	0	2.251364	4.057203	-0.333757	
7	6	0	3.120423	0.786248	-0.789591	
8	1	0	1.711435	-0.845984	-0.801649	
9	1	0	4.232697	2.635691	-0.730336	
10	б	0	4.291645	-0.069114	-1.065366	
11	26	0	5.959828	-0.391390	0.155089	
12	6	0	4.427985	-1.463563	-0.752297	
13	6	0	5.499059	0.327243	-1.735413	
14	6	0	5.692167	-1.916062	-1.231205	
15	6	0	6.354075	-0.808309	-1.840659	
16	6	0	5.725479	0.706775	1.903326	
17	6	0	6.918739	1.106979	1.228739	
18	6	0	7.768570	-0.035667	1.118739	
19	6	0	7.100206	-1.141780	1.725353	
20	1	0	3.710331	-2.059891	-0.206061	
21	1	0	5.720471	1.320333	-2.100701	
22	1	0	6.094065	-2.913183	-1.115874	
23	1	0	7.342107	-0.818968	-2.279864	
24	6	0	5.837504	-0.683077	2.209863	
25	1	0	4.868292	1.334487	2.104937	
26	1	0	7.130563	2.094682	0.842801	
27	1	0	8.733782	-0.065976	0.632053	
28	1	0	7.471112	-2.156203	1.778926	
29	1	0	5.084454	-1.288840	2.694926	
30	1	0	-0.005516	3.037904	-0.132764	
31	6	0	-0.580617	0.422713	-0.334815	
32	6	0	-1.679459	-0.096056	-0.251047	
33	6	0	-2.948685	-0.728951	-0.159139	
34	6	0	-4.147979	0.029942	-0.047378	
35	6	0	-3.021076	-2.136972	-0.182901	
36	6	0	-5.398067	-0.654653	0.036389	
37	6	0	-4.146995	1.464389	-0.018417	
38	6	0	-4.236845	-2.797056	-0.099513	
39	1	0	-2.098791	-2.702176	-0.268767	
40	6	0	-6.612880	0.088899	0.144997	
41	6	0	-5.442790	-2.082472	0.010324	
42	6	0	-5.306412	2.172489	0.085915	
43	1	U	-3.192236	1.975488	-0.083446	
44		U	-4.264786	-3.883200	-0.119785	
45	6	0	-6.580352	1.516102	U.170892	

46	б	0	-7.866499	-0.592386	0.227129
47	б	0	-6.715804	-2.739171	0.095808
48	1	0	-5.283213	3.259037	0.105608
49	б	0	-7.787758	2.226685	0.276944
50	б	0	-9.047481	0.160929	0.331853
51	б	0	-7.873784	-2.028717	0.199153
52	1	0	-6.736937	-3.825672	0.075539
53	б	0	-9.005670	1.554044	0.356184
54	1	0	-7.761678	3.313012	0.296241
55	1	0	-10.000841	-0.357149	0.394208
56	1	0	-8.829877	-2.541761	0.262621
57	1	0	-9.929507	2.119457	0.437542

-1432.3228567 Hartree

Ferrocenyl substituted pyrene 3c

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	б б	0	7.770067	0.656254	-1.493562
2	26	0	6.359847	-0.067205	-0.146766
3	б	0	7.865368	1.362391	-0.256371
4	б	0	6.452647	0.848762	-2.010601
5	б	0	6.607406	1.991834	-0.009208
6	б	0	5.734629	1.674828	-1.093548
7	б	0	6.710631	-2.094908	0.140665
8	б	0	5.385676	-1.887983	-0.340844
9	б	0	4.676743	-1.064264	0.600611
10	б	0	5.600981	-0.758400	1.657787
11	1	0	8.727595	1.388052	0.395846
12	1	0	6.060330	0.421521	-2.923273
13	1	0	6.350489	2.578946	0.861834
14	1	0	4.697755	1.969450	-1.181177
15	б	0	6.844018	-1.395836	1.377258
16	1	0	7.486023	-2.657909	-0.360232
17	1	0	4.984210	-2.288244	-1.260987
18	1	0	5.402327	-0.121497	2.508177
19	1	0	7.740258	-1.329468	1.978503
20	1	0	8.547671	0.053669	-1.942518
21	б	0	3.267645	-0.641706	0.514522
22	б	0	2.545083	-0.736604	-0.689442
23	б	0	2.587394	-0.159457	1.646789
24	б	0	1.206682	-0.373173	-0.760001
25	1	0	3.041726	-1.092961	-1.586506

	26	б	0	1.251046	0.216794	1.583120
2	27	1	0	3.106653	-0.096108	2.597740
	28	6	0	0.530901	0.112667	0.377574
	29	1	0	0.668540	-0.456899	-1.698864
	30	1	0	0.745552	0.581386	2.471632
	31	6	0	-0.847029	0.476908	0.313280
	32	б	0	-2.025387	0.779561	0.264902
	33	б	0	-3.401827	1.146807	0.212066
	34	б	0	-4.417767	0.163628	0.055115
	35	б	0	-3.763061	2.503991	0.319569
	36	б	0	-5.783690	0.576687	0.008610
	37	б	0	-4.118640	-1.236283	-0.052431
	38	б	0	-5.091052	2.901684	0.270826
	39	1	0	-2.977143	3.242562	0.439268
4	40	б	0	-6.818576	-0.396174	-0.142455
4	41	б	0	-6.123044	1.960367	0.115700
4	42	б	0	-5.106984	-2.162868	-0.195708
4	43	1	0	-3.077892	-1.540595	-0.013780
4	44	1	0	-5.342956	3.955555	0.353450
4	45	б	0	-6.490474	-1.782031	-0.245766
4	46	б	0	-8.186980	0.012899	-0.188712
4	47	б	0	-7.506030	2.341842	0.063533
4	48	1	0	-4.858933	-3.218288	-0.273734
4	49	б	0	-7.525083	-2.721333	-0.390453
I	50	б	0	-9.186854	-0.962662	-0.335147
I	51	б	0	-8.491815	1.413034	-0.081991
ļ	52	1	0	-7.752290	3.397390	0.144380
I	53	б	0	-8.856921	-2.313439	-0.434173
ļ	54	1	0	-7.274316	-3.775974	-0.467995
ļ	55	1	0	-10.227641	-0.651540	-0.369919
ļ	56	1	0	-9.534168	1.718924	-0.119012
ļ	57	1	0	-9.644048	-3.053530	-0.546008

-1432.322145 Hartree

Ferrocenyl substituted pyrene 4a

Standard	orientation:	

Center Atomic		Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1		0			0 210456
2	6	0	-6.539892	0.881439	0.360814
3	б	0	-5.148636	0.722168	0.248437
4	б	0	-4.612522	-0.570844	-0.021973
5	6	0	-5.497250	-1.683816	-0.160658
б	6	0	-6.882031	-1.477283	-0.045980

7	б	0	-4.236185	1.811718	0.424302
8	б	0	-3.201000	-0.752531	-0.145690
9	б	0	-2.317496	0.370526	-0.035290
10	б	0	-2.890501	1.645130	0.293736
11	б	0	-0.915151	0.151692	-0.181651
12	6	0	-0.433765	-1.166275	-0.332656
13	6	0	-1.291743	-2.245488	-0.442871
14	6	0	-2.684394	-2.065188	-0.372020
15	6	0	-3.594013	-3.165820	-0.503224
16	б	0	-4.940702	-2.982663	-0.408400
17	1	0	-5.618882	-3.825426	-0.512382
18	1	0	-3.182757	-4.155682	-0.680425
19	1	0	-4.636865	2.788411	0.680104
20	1	0	-8.469113	-0.066817	0.297454
21	1	0	-6.943160	1.868552	0.569245
22	1	0	-7.553068	-2.324568	-0.158364
23	1	0	-2.236721	2.488830	0.471731
24	1	0	0.636263	-1.328353	-0.410791
25	1	0	-0.891950	-3.244355	-0.593075
26	6	0	0.090906	1.227331	-0.211149
27	б	0	-0.012413	2.362687	-0.981315
28	6	0	1.243884	1.002203	1.956892
29	б	0	2.337217	0.720085	2.835434
30	б	0	0.001590	1.268721	2.617900
31	б	0	-1.056628	2.572091	-1.939032
32	6	0	0.958566	3.415947	-0.913425
33	7	0	3.201567	0.470061	3.574083
34	7	0	-0.987016	1.503263	3.186044
35	7	0	-1.866499	2.768112	-2.751066
36	7	0	1.726653	4.288920	-0.866170
37	6	0	1.354792	1.029725	0.584650
38	6	0	2.602809	0.917628	-0.161072
39	26	0	3.840913	-0.752007	-0.388932
40	б	0	2.701690	0.551394	-1.556249
41	б	0	3.947395	1.198957	0.293462
42	б	0	4.061759	0.634006	-1.944625
43	б	0	4.824916	1.042912	-0.809081
44	б	0	3.137242	-2.387044	0.698436
45	б	0	4.431969	-2.007751	1.162013
46	б	0	5.337338	-2.118338	0.063480
47	б	0	4.601498	-2.559555	-1.077243
48	1	0	1.877604	0.260103	-2.191733
49	1	0	4.233158	1.498161	1.289464
50	1	0	4.455016	0.395943	-2.922898
51	1	0	5.897195	1.177147	-0.779557
52	6	0	3.238734	-2.726465	-0.684960
53	1	0	2.230470	-2.379581	1.288161
54	1	0	4.667698	-1.655216	2.156337
55	1	0	6.389461	-1.869475	0.081271
56	1	0	4.998901	-2.709184	-2.071694
57	1	0	2.428080	-3.037793	-1.329539

-1648.8337766 Hartree

Ferrocenyl substituted pyrene **4b**

Contor	Atomia				
Number	ALOUILC	ALOUITC	v COOLC		SCIOUS)
		туре	л 	I	ے۔۔۔۔
1	б	0	-6.044450	-3.447049	-1.905875
2	б	0	-4.781466	-2.965539	-2.240959
3	6	0	-4.134568	-2.021131	-1.425500
4	б	0	-4.780597	-1.554817	-0.243228
5	6	0	-6.074448	-2.058647	0.094103
6	6	0	-6.684823	-2.999669	-0.751022
7	б	0	-2.834114	-1.507871	-1.732629
8	б	0	-4.140131	-0.593090	0.597553
9	б	0	-2.847908	-0.078706	0.254469
10	б	0	-2.220260	-0.590998	-0.931893
11	б	0	-2.235296	0.873706	1.124021
12	б	0	-2.909222	1.266304	2.298277
13	б	0	-4.161063	0.775727	2.619049
14	б	0	-4.802308	-0.155997	1.786225
15	б	0	-6.101598	-0.675657	2.099514
16	6	0	-6.711441	-1.585166	1.289693
17	1	0	-7.696209	-1.971012	1.539014
18	1	0	-6.590662	-0.325596	3.004019
19	1	0	-2.330678	-1.868740	-2.625441
20	1	0	-6.532960	-4.175082	-2.546342
21	1	0	-4.282857	-3.316818	-3.140184
22	1	0	-7.670299	-3.378208	-0.493488
23	1	0	-1.230826	-0.248310	-1.203688
24	1	0	-2.459295	2.016991	2.937705
25	1	0	-4.664744	1.126381	3.514677
26	6	0	-0.926838	1.500083	0.841771
27	б	0	-0.639460	2.087943	-0.501174
28	б	0	0.029891	1.587642	1.834440
29	6	0	-1.612080	2.836340	-1.128926
30	6	0	0.683394	1.841859	-1.116822
31	б	0	1.338812	2.841367	-1.858203
32	6	0	1.325703	0.602894	-0.928451
33	6	0	2.593841	2.584960	-2.401290
34	1	0	0.894555	3.821947	-1.974357
35	6	0	2.591830	0.335733	-1.463149
36	1	0	0.828595	-0.169130	-0.353069
37	6	0	3.212835	1.352151	-2.211902
38	1	0	3.103463	3.363102	-2.960767
39	1	0	4.200358	1.185059	-2.628592

40	б	0	3.247314	-0.965402	-1.240068
41	26	0	4.747351	-1.355656	0.153905
42	б	0	2.833007	-1.992457	-0.322078
43	6	0	4.433145	-1.448172	-1.894935
44	6	0	3.741793	-3.084499	-0.423470
45	б	0	4.730316	-2.748020	-1.395102
46	6	0	5.114755	0.375248	1.257415
47	6	0	6.289987	-0.017415	0.547878
48	6	0	6.652742	-1.328977	0.982705
49	6	0	5.699825	-1.747401	1.959925
50	1	0	1.998688	-1.940205	0.363003
51	1	0	5.011390	-0.917862	-2.638150
52	1	0	3.708344	-3.991644	0.163762
53	1	0	5.576924	-3.357051	-1.680189
54	6	0	4.750534	-0.694152	2.128997
55	1	0	4.571853	1.303049	1.135750
56	1	0	6.802481	0.565991	-0.204787
57	1	0	7.483390	-1.914611	0.613185
58	1	0	5.681405	-2.706257	2.459579
59	1	0	3.890421	-0.713195	2.784176
60	6	0	-1.509901	3.281921	-2.488453
61	6	0	-2.826320	3.260821	-0.494031
62	6	0	-0.083059	0.893130	3.084223
63	6	0	1.230713	2.364800	1.729527
64	7	0	-1.505253	3.648745	-3.592967
65	7	0	-3.811718	3.677197	-0.035716
66	7	0	-0.093875	0.326037	4.100766
67	7	0	2.216706	2.983372	1.720619

-1879.8878569 Hartree

¹H NMR Spectra of **2**

¹³C NMR Spectra of **3a**

¹H NMR Spectra of **3b**

¹³C NMR Spectra of 4a

HRMS of 4a

¹H NMR Spectra of **4b**

HRMS of 4b

ⁱ (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, **2009**; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789; (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372–1377; (c) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270-283; (d) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, **77**, 3654-3665.