Supplementary information

High capacity MnFe₂O₄/rGO composite for Li and Na-ion battery

applications

Pratap Kollu *^a, Ramesh Kumar Petla ^b, Chella Santosh ^c, Do Kyung Kim *^b and Andrews Nirmala Grace*^c

^a Thin Film Magnetism group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
^b Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305–701, Republic of Korea
^c Centre for Nanotechnology Research, VIT University, Vellore- 632014, Indi

Figure S1: XRD patterns for the pure MnFe₂O₄ along with JCPDS data.

Figure S2: TGA/DSC plots for the $MnFe_2O_4/rGO$ composite in air atmosphere.

Figure S3: Cyclic voltammetry plots for the pure $MnFe_2O_4~Vs.~Li/Li^+$.

Figure S4: a) cycleability and b) charge –discharge curves for the pure MnFe₂O₄ vs Li/Li⁺

Figure S5: XRD patterns for the $MnFe_2O_4/rGO$ electrodes versus Na/Na⁺ at a) 1st discharge and b) 1st charge states along with existence compound JCPDS data.