Supporting information for

Single and Bicomponent Anionic Dyes Adsorption Equilibrium Studies on Magnolia-Leaf-Based Porous Carbons

Huijing Yu, ${ }^{a}$ Tingting Wang, ${ }^{a}$ Wei Dai, ${ }^{* a}$ Xianxing Li, ${ }^{a}$ Xin Hu, ${ }^{a}$ and $\mathrm{Na} \mathrm{Ma*b}$
${ }^{\text {a }}$ College of Chemistry and Life Science, Zhejiang Normal University, Zhejiang Province Jinhua 321004, People’s Republic of China
${ }^{\mathrm{b}}$ College of Geography and Environmental Sciences, Zhejiang Normal University, Zhejiang
Province Jinhua 321004, People's Republic of China

Table S.I. captions:

Table S.I. 1 Different isotherm models used in this study and their linear forms

Table S.I. 2 Parameters of the isotherm models for the adsorption processes

Table S.I. 3 Isotherm parameters of OII and MO adsorption from binary solutions
Table S.I. 4 Comparison of the maximum uptake capacities of OII and MO dyes on various porous carbons.

Table S.I. 5 Kinetic parameters for OII and MO adsorption from SDS and BDS

Table S.I. 1 Different isotherm models used in this study and their linear forms

Isotherm	Nonlinear form	Linear form	Plot
Langmuir-I	$q_{e}=\frac{K_{L} C_{e}}{1+K_{L} C_{e}}$	$\frac{C_{e}}{q_{e}}=\frac{1}{q_{L} \cdot K_{L}}+\left(\frac{1}{q_{L}}\right) \cdot C_{e}$	$\frac{C_{e}}{q_{e}}$ versus C_{e}
Freundlich	$q_{e}=K_{f} C_{e}^{\frac{1}{n}}$	$\ln q_{e}=\ln K_{f}+\left(\frac{1}{n}\right) \cdot \ln C_{e}$	$\ln q_{e}$ versus $\ln C_{e}$
Temkin	$q_{e}=\left((R T / b) \ln \left(A \cdot C_{e}\right)\right)$	$q_{e}=\beta \ln K_{T}+\beta \ln C_{e}$	q_{e} versus $\ln C_{e}$
D-R	$q_{e}=q_{s} e^{\left(-K_{D} \varepsilon^{2}\right)}$	$\ln q_{e}=\ln q_{s}-K_{D} \varepsilon^{2}$	$\ln q_{e}$ versus ε^{2}

Where q_{m} is the maximum capacity of adsorption in $\mathrm{mg} / \mathrm{g} ; K_{L}$ is a constant related to the affinity of the binding sites in L / mg; ' K_{f} ' and ' n ' are the measures of adsorption capacity and intensity of adsorption; $\beta=(R T) / b_{T}$, is the Temkin constant; T is the absolute temperature in $K ; R$ is the universal gas constant; b_{T} is related to the heat of adsorption in $\mathrm{kJ} / \mathrm{mol}$.; K_{T} is the equilibrium binding constant in $\mathrm{L} / \mathrm{mol}$.; q_{s} is the D-R isotherm constant in mg / g; ε represents the Polanyi potential constant in $\mathrm{kJ} \mathrm{mol}^{-1} ; \varepsilon=R T \ln \left(1+\frac{1}{C_{e}}\right)$

Table S.I. 2 Parameters of the isotherm models for the adsorption processes

Isotherm		SDS				BDS			
				M					
Model	Parameter	Value	R^{2}	Value	R^{2}	Value	R^{2}	Value	R^{2}
Langmuir	$q_{L}(\mathrm{mg} / \mathrm{g})$	1501	0.9996	870	0.9999	962	0.9998	448	0.9999
	$K_{L}(\mathrm{~L} / \mathrm{g})$	0.25		0.50		0.29		0.49	
Freundlich	$k_{f}(\mathrm{~L} / \mathrm{g})$	990	0.9855	647	0.8789	496	0.9417	369	0.9178
	n	13.84		19.12		8.15		29.47	
Temkin	b_{T} (kJ/mol)	28.02	0.9892	60.51	0.8857	30.88	0.9425	180	0.9293
	$K_{T}(\mathrm{~L} / \mathrm{g})$	6.6×10^{4}		5.7×10^{6}		582		4.4×10^{11}	
D-R	$q_{s}(\mathrm{mg} / \mathrm{g})$	1393	0.7117	861	0.9609	827	0.5366	441	0.9232
	$\begin{gathered} K_{D} \\ \left(\mathrm{~mol}^{2} / \mathrm{kJ}^{2}\right) \\ \hline \end{gathered}$	1.0×10^{-7}		1.9×10^{-6}		2.4×10^{-8}		8.7×10^{-8}	

Table S.I. 3 Isotherm parameters of OII and MO adsorption from binary solutions

Sample	Dye	Competitive-Langmuir isotherm					Langmuir		
		$\begin{gathered} q_{\max 1} \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} K_{\mathrm{L} 1} \\ (\mathrm{~L} / \mathrm{mg}) \end{gathered}$	$\begin{gathered} q_{\max 2} \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} K_{\mathrm{L} 2} \\ (\mathrm{~L} / \mathrm{mg}) \end{gathered}$	R^{2}	$\begin{gathered} q_{L} \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \hline K_{\mathrm{L}} \\ (\mathrm{~L} / \mathrm{mg}) \end{gathered}$	R^{2}
MPC-1	OII	1000	56.34	-	-	0.815	962	0.29	0.9998
	MO	-	-	500	2.00	0.982	448	0.49	0.9999

Table S.I. 4 Comparative assessment of uptake capacity of OII and MO onto some adsorbents from partial previously literatures

Dyestuff	Adsorbent	Maximum monolayer uptake capacities $(\mathrm{mg} / \mathrm{g})$	Reference	System
OII	MCP-1	1488	this work	SDS
	MCP-1	951	this work	BDS
	ML	128	this work	SDS
	ML	79	this work	BDS
	CS-A.C.	322	this work	SDS
	CS-A.C.	286	this work	BDS
	NCTW	312	21	SDS
	ACX	499	40	SDS
	ACF	438	4	SDS
	MCP-1	869	this work	SDS
	MCP-1	447	this work	BDS
	ML	115	this work	SDS
	ML	315	this work	BDS
MO	CS-A.C.	280	this work	SDS
	CS-A.C.	935	this work	BDS
	FAC	161	19	SDS
	NPAC	286	41	SDS
	MPW		42	BDS

Table S.I. 5 Kinetic parameters for OII and MO adsorption from SDS and BDS

System	Pseudo-first-order rate equation							Pseudo-second-order rate equation					Intra-particle diffusion model		
	Dye	$\begin{gathered} q_{e, \exp } \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{gathered} q_{e, c a l} \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{gathered} K_{l} \\ (1 / \mathrm{min}) \end{gathered}$	R^{2}	$\begin{gathered} \triangle q \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{aligned} & \triangle q \\ & (\%) \end{aligned}$	$\begin{gathered} q_{e, c a l} \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{gathered} K_{2} \\ (\mathrm{~g} / \mathrm{mg} \cdot \mathrm{~min}) \end{gathered}$	R^{2}	$\begin{gathered} \triangle q \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{aligned} & \triangle q \\ & (\%) \end{aligned}$	$\begin{gathered} C \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{gathered} K_{3} \\ \left(\mathrm{mg} / \mathrm{g} \cdot \min ^{1 / 2}\right) \end{gathered}$	R^{2}
SDS	OII	1450	1082	0.2739	0.9536	368	25.38	1512	0.8412	0.9991	-61.8	-4.26	704	159	0.8206
	MO	827	227	0.1449	0.9386	600	72.55	840	1.7838	0.9998	-12.9	-1.56	546	61	0.6667
TDS	OII	757	475	0.1869	0.9250	282	37.24	807	0.5487	0.9992	-49.9	-6.59	391	78	0.7410
	MO	479	52	0.1805	0.7305	427	89.15	488	2.0677	0.9988	-9.2	-1.92	368	25	0.3118

