Supporting information

Sonochemical synthesis of cyclophosphazene bridged mesoporous organosilicas and their application in methyl orange, congo red and Cr(VI) removal

Pawan Rekha, Raeesh Muhammad and Paritosh Mohanty*

Figure S1. FT-IR of CPMOs

Band assignments	Wavenumber (cm ⁻¹)
C-H stretching(APTES)	2929-2856
v _{as} (P=N-P)	1406-1418
P=N	1196-1209
Si-O-Si and v _{as} (P-NH-P)	1237-1050
v_{as} (P-NH-P) and Si-OH	950
Si-O-Si	800
δ (P=N-P)	544-555

Table S1. Observed FT-IR band positions along with their assignments of CPMOs

Figure S2. ³¹P CPMAS NMR of CPMOs synthesized by sonication

Figure S3. Small angle X-ray scattering pattern of CPMOs

Table S2. Position and % of the	e T and Q sites in different samp	les
---------------------------------	-----------------------------------	-----

Sample ID	Position of <i>T</i> sites		Position of Q sites		sites
	<i>T</i> ² (ppm), (%)	<i>T</i> ³ (ppm), (%)	<i>Q</i> ² (ppm), (%)	Q ³ (ppm), (%)	Q ⁴ (ppm), (%)
CPMO-0SR	-58, (27.6)	-66, (72.4)			
CPMO-4SR	-57, (20.1)	-66, (8.4)	-90, (8.1)	-100, (47.9)	-110, (15.5)

Sample ID	N (wt%)	C (wt%)	H (wt%)	C/N ratio
CPMO-0SR	11.71	23.62	5.28	2.01
CPMO-2SR	6.19	11.85	3.17	1.91
CPMO-3SR	5.22	9.58	3.13	1.83
CPMO-4SR	5.14	8.93	2.85	1.73
CPMO-8SR	4.86	8.28	2.1	1.70

Table S3. C, H and N elemental analysis of CPMOs

Figure S4. TGA and DTG thermograms of CPMOs measured in nitrogen atmosphere with a heating rate of 10 °C min⁻¹

Figure S5. Pore size distribution of CPMOs

Figure S6. N₂ sorption isotherms of CPMO-0SR and CPMO-4SR measured at 77 K

Figure S7. N₂ sorption isotherm of PMO-4S (without PNC) measured at 77 K

Figure S8. CO₂ sorption isotherms of CPMOs measured at 273K

Figure S9. Comparison of adsorption capacity of CPMOs for (a) organic dyes and (b) Cr(VI) ions removal

Table S4. Comparison of adsorption capacities of CPMOs for (a) organic dyes and (b) Cr(VI) ions removal

Sample ID	MO $(q_{max})(mg g^{-1})$	$CR (q_{max})(mg g^{-1})$	$Cr(VI)(q_{max})(mg g^{-1})$
CPMO-2SR	514.515	226	81.469
CPMO-3SR	513.857	239	87.338
CPMO-4SR	523	319.46	95.206
CPMO-8SR	498.817	264.79	51
PMO-4S	474.307	281.32	73.3

Silica type	q _{max} (mg g ⁻¹)	Ref.
3 Aminopropyl functionalized MCM-48	65	S1
6-amino-4-azahexyl functionalized MCM-48	119	S1
9-amino-4,7-diazanonyl functionalized MCM-48	160	S1
AP-TMS modified MCM-45	40	S2
Amine-Functionalized Mesoporous Silica	82	S3
Magnetic functionalized MCM-48 mesoporous	115.6	S4
silica with melamine		
CPMO-4SR	101	Present work

Table S5: Adsorption capacities q_{max} for Cr (VI) removal of selected results from the literature

Table S6: Adsorption capacities q_{max} for methyl orange removal of selected results from the literature

Material type	q _{max} (mg g ⁻¹)	Ref.
Ammonium-functionalized silica	105.4	S5
nanoparticle		
Mesoporous carbon material	294.1	S6
Alkali-activated multiwalled carbon nanotubes	149	S7
Poly HEMA-chitosan-MWCNT nano-composite	306	S8
CPMO-4SR	523	Present work

Table S7: Adsorption capacities q_{max} for congo red removal of selected results from the literature

Silica type	q _{max} (mg g ⁻¹)	Ref.
Modified xanthan gum/silica hybrid nanocomposite	209.21	S9
Graphene oxide/chitosan fibers	294.12	S10
Maghemite nanoparticles	208.33	S11
Cu-BTC	959.9	S12
Ni50/Cu-BTC	1078	S12
CPMO-4 SR	320	Present work

Table S8. Thermodynamic parameters for the adsorption of organic dyes and Cr(VI) ions by CPMO-4SR

	МО	CR	Cr(VI) ion
T (K)	$\Delta G (kJ mol^{-1})$	$\Delta G (kJ mol^{-1})$	
283		-0.292	
293	-8.095	-0.312	
298	-8.254	-0.324	-7.4
303	-8.384	-0.321	
313	-8.635	-0.326	-5.089
323	-8.80	-0.304	
333	-9.04	-0.301	-1.58
343		-0.289	
353		-0.256	

Table S9. Thermodynamic parameters for the adsorption of organic dyes and Cr(VI) ions by CPMO-4SR

Adsorbate	Thermodynamic parameters		
	$\Delta H(kJ \text{ mol}^{-1}) \qquad \Delta S [J (mol K)^{-1})]$		
МО	-1.377	23	
CR	-0.461	-0.498	
Cr(VI) ion	-7.096	-172	

References

- S1. T. Yokoi, Y. Kubota and T. Tatsumi, Appl. Catal. A, 2012, 421-422, 14-37.
- S2. S. A. Idris, K. M. Alotaibi, T. A. Peshkur, P. Anderson and M. Morris, *Microporous Mesoporous Mater.*, 2013, **165**, 99-105.
- S3. X. Li, C. Han, W. Zhu, W. Ma, Y. Luo, Y. Zhou, J. Yu and K. Wei, J. Chem., 2014, 2014, 1-10.
- S4. M. Anbia, K. Kargosha and S. Khoshbooei, Chem. Eng. Res. Des., 2015, 93, 779-788.
- S5. J. Liu, S. Ma and L. Zang, Appl. Surf. Sci., 2013, 265, 393-398.
- S6. N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh and S. Agarwal, J. Colloid Interface Sci., 2011, 362, 457–462.
- S7. J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, Y. Tang, H. Fan, Z. Yuan and J. Chen, *ACS Appl. Mater. Interfaces*, 2012, 4, 5749–5760.
- S8. H. Mahmoodian, O. Moradi, B. Shariatzadeha, T. A. Salehf, I. Tyagi, A. Maity, M. Asif, and V. K. Gupta, *J. Mol. Liq.*, 2015, **202**, 189–198.

- S9. S. Ghorai, A. K. Sarkar, A. B. Panda and S. Pal, *Bioresour. Technol.*, 2013, **144**, 485–491.
- S10. Q. Du, J. Sun, Y. Li, X. Yang, X. Wang, Z. Wang and L. Xia, *Chem. Eng. J.*, 2014, **245**, 99–106.
- S11. A. Afkhami and R. Moosavi, J. Hazard. Mater., 2010, 174, 398–403.
- S12. J. Hu, H. Yu, W. Dai, X. Yan, X. Hu and H. Huang, *RSC Adv.*, 2014, **4**, 35124–35130.