Electronic Supplementary Information

Hole-Transport-Material-Free Perovksite Solar Cells Based on Nanoporous Gold Back Electrode

Xiaoxin Zhou^a, Chunxiong Bao^a, Faming Li^a, Hao Gao^a, Tao Yu^{*a b c}, Jie Yang^a, Weidong Zhu^a and Zhigang Zou^{a b c}

^a. National Laboratory of Solid State Microstructures & Eco-Materials and Renewable Energy Research Center (ERERC) at Department of Physics, Nanjing University, Nanjing 210093, P. R. China. E-mail: yutao@nju.edu.cn
^b. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing

210093, P.R.China

^c. Jiangsu Key Laboratory for Nano Technology, Nanjing 210093, P.R.China

Materials

Hydroiodic acid (57 wt % in water, 99.99%) and methylamine (33 wt % in absolute ethanol) were purchased from Sigma-Aldrich. N,N-dimethylformamide (DMF, anhydrous 99.5%, Aladdin) and lead iodide (PbI2) (99.999%) were purchased from Aladdin Reagents. Titanium diisopropoxide bis(acetylacetonate) solution (75% in 2-propanol) was purchased from Alfa Aesar. All of the used reagents were analytical grade, without further purification. The 12 carat 100 nm thick white-gold decorative films with 1:1 weight ratio of Ag/Au was purchased from Seep Leaf Products (New York), which used as the raw material of NPG. CH₃NH₃I was synthesized according to a literature.¹

NPG fabrication

The Ag/Au alloy leaf was first tailored into suitable size. Then, the small leaf was transferred to deionized water to conserve using a glass. Transfer the leaf from deionized water to 68% HNO₃ by a glass and etched in HNO₃ for 20 min. After that,

the NPG was obtained and then transferred to deionized water to remove the residual HNO₃ for several hours before use.

Solar cells fabrication

The fluorine-doped tin oxide (FTO) glass was etched by Zn powder and 10% HCl. Then the FTO was ultrasonic cleaned with detergent, deionized water, ethanol and acetone. After that the glass was treated in an ultraviolet-ozone cleaner for 30 min. A compact TiO₂ layer was prepared on the cleaned FTO glass by aerosol spray pyrolysis using a commercial titanium diisopropoxide bis (acetylacetonate) solution (75% in 2propanol) diluted in ethanol (1:25, volume ratio) at 450 °C, and annealed at 500 °C for 30 min. After cooling down to room temperature, a mesoporous TiO₂ layer was spincoated at 5,000 r.p.m for 30 s using commercial TiO₂ paste diluted in ethanol at weight ratio 2:7. The film was dried at 125 °C for 30 min and then heated at 500 °C for 30 min. An Al₂O₃ blacking layer was spin-coated on the mesoporous TiO₂ at 5000 r.p.m for 60 s using a commercial Al₂O₃ paste, the annealing process is the same as mesoporous TiO₂. After that, the NPG was transferred onto the as-prepared substrate by using the substrate instead of the glass to salvage. Before deposition CH₃NH₃PbI₃, the substrate was dried for several hours to remove the water completely. CH₃NH₃PbI₃ were infiltrated in the pores by different ways. For one-step spin-coating deposition, 1 mol/L CH₃NH₃PbI₃ in N,N-dimethylformamide (DMF) was load on the substrate for 60 s, and then spinning at 3000 r.p.m for 30 s. The device was completed after annealing at 90 °C for 30 min. For sequential deposition and two-step spincoating process, 1 mol/L PbI₂ solution in DMF was loaded on the substrate for 30 s, then spinning at 4500 r.p.m for 60 s at 70 °C, dried at 90 °C for 5 min. After cooling to room temperature, the substrate was dip in 12 mg/ml CH₃NH₃I solution in isopropanol for 2 min or 12 mg/ml CH₃NH₃I solution in isopropanol was loaded on the PbI₂ for 20 s, then spinning at 2000 r.p.m for 30 s, respectively. After that, the sample was annealed at 90 °C for 30 min.

Characterization

X-Ray diffraction (XRD) patterns were collected on a Rigaku Ultima III X-ray diffractometer (Cu K α) in the range of 10°-60°. A FEI NOVA NanoSEM230 scanning electron microscopy (SEM) was employed to characterize the top surface morphological of all samples. The J –V testing of the HTM-free perovskite solar cells employed a Keithley 2400 source measure unit under AM 1.5 illumination cast by an Oriel 92251A-1000 sunlight simulator

Notes and references

1. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, *Nanoscale*, 2011, **3**, 4088-4093.