Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Facile and green synthesis of graphene oxide by electrical exfoliation of pencil graphite and gold nanoparticle for non-enzymatic simultaneous sensing of ascorbic acid, dopamine and uric acid

Habibulla Imran, Palinci Nagarajan Mainkandan, Venkataraman Dharuman*

Department of Bioelectronics and Biosensors

Science Campus

Alagappa University

Karaikudi - 630 003

Tel.: +91 4565 223361 ; Fax: +91 4565 225525

E-mail : dharumanudhay@yahoo.com

Fig. S1. UV behaviors of the electrically exfoliated GO in PBS (PGO, curve a), HCl (HGO, curve b) and NaOH (NGO, curve c)

Fig. S2. Photo chemi luminescence behaviors of the electrically exfoliated GO in PBS (PGO, curve a), HCl (HGO, curve b) and NaOH (NGO, curve c)

Fig. S3. Contact angles measured using contact angle goniometer for the electrically exfoliated GO. (a) PGO, (b) HGO and (c) NGO.

Fig. S4. Selective detection of AA (A), UA (B) and DA (C) using PGO-AuNP composite measured by DPV. Inset: Current *versus* concentration plots of the respective analytes. Error bars are included.

Fig. S5. Lineweaver-Burk plots for calculating the Michaelis-Menten kinetic parameter k_M for the GCE-PGO-AUNP (A-C) and GCE-PErGO-AuNP (D-F) for the analyte AA, UA and DA in phosphate buffer.

Fig. S6. Reproducibility detections of AA, UA and DA by differential pulse voltammetry

Table S1. Michaelis-Menten kinetic parameter k_M , linear ranges and lowest detection limits observed at the PGO-AuNP and PErGO-AuNP surfaces respectively for the AA, UA and DA in PBS buffer.

Parameter	Analyte	PGO-AuNP	PErGO-AuNP	
	AA	1.35	58	
К _М (mM)	UA	1.28	104	
	DA	0.07	110	
Linear range (µM)	AA	200 - 800	1 - 6000	
	UA	20 - 260	2 - 7000	
	DA	5 - 100	0.01 - 3000	
Detection limit (µM)	AA	200	1	
	UA	20	2	
	DA	5	0.01	

Table S2. Literature review of simultaneous determinations of AA, UA and DA at graphene oxide /metal

or metal oxide modified electrodes.

S.No	Surface	Analyte	Detection limits	рН	References Number
1.	Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites	АА	100 nM,	рН 7.4	1
2.	Iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE)	AA, and DA	$1~\text{mM}$ and $0.5~\mu\text{M}$	рН 6.5	2
3.	Graphene sheets and gold nanoparticles modified carbon fiber electrode (GE/Au/GE/CFE)	DA and UA	0.59µM and 12.6µM	рН 7.4	3
4.	Gold nanoparticles (AuNPs) and graphene nanosheets (GNS)	AA, DA and UA	1mM , 0.2mM and 0.2mM .	рН 7.0	4
5.	reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites	AA, DA, and UA	0.28, 0.024, and 0.02µM	рН 7.0	5
6.	AuNPs / MoS2 nanocomposite	AA, DA and UA	50, 0.05 and 50 μM	рН 7.0	6
7.	Multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs)	AA, DA, UA and tryptophan	300 μM, 0.5 μM, 0.5 μM and 1.0 μM,	рН 7.0	7
8.	reduced graphene oxide modified glassy carbon electrode (RGO-GCE)	AA, DA and UA,	$4.2~\mu M,8~nM$ and $0.6~\mu M,$	рН 3.0	8
9.	screen-printed graphene electrode	AA, DA, and UA	0.95 , 0.12 and $0.20 \ \mu M$	рН 7.0	9
10.	electrochemical reduction of graphene oxide (GO) attached through 1,6-hexadiamine on GCE	UA, xanthine (XN), hypoxanthine (HXN) and caffeine (CAF)	0.08 μM, 0.1 μM, 0.32 μM and 0.43 μM	рН 7.2	10
11.	Poly(methylene blue) / and electrochemically reduced graphene oxide composite film (PMB-ERGO/GCE)	UA and xanthine (Xa)	$0.03 \ \mu M$ and $0.05 \ \mu M$	рН 3.0	11
12.	Nitrogen doped graphene	AA, DA and UA	2.2 μM, 0.25 μM and 0.045 μM	рН 6.0	12
13.	Chitosan functionalized graphene	AA, DA and UA	50, 1.0 and 2.0 μM	рН 7.0	13
14.	Graphene oxide-templated polyaniline (GO- PAN) microsheets	AA, DA and UA	5, 5 and 10 μM	рН 7.4	15
15.	PErGO-AuNP	AA, DA and UA	1 μM, 10 nM, and 2 μM	pH 7.4	This Work

References

- [1]. J. Song, L. Xu, R. Xing, Q. Li, C. Zhou, D. Liu, H. Song, Sci. Rep., 2014, 4, 7515
- [2]. T. Peik-See, A. Pandikumar, H. N.Ming, L. H. Ngee, Y. Sulaiman, Sensors, 2014, 14, 15227
- [3]. J. Du, R. Yue, F. Ren, Z. Yao, F. Jiang, P. Yang, Y. Du, Gold Bull, 2013, 46, 137
- [4]. C. Wang, F. Ye, H. Wu, Y. Qian, Int. J. Electrochem. Sci., 2013, 8, 2440
- [5]. J. Jiang, X. Du, Nanoscale, 2014,6, 11303
- [6]. H. Sun, J. Chao, X. Zuo, S. Su, X. Liu, L. Yuwen, C. Fan L. Wang, RSC Adv., 2014, 4, 27625
- [7]. H. Filik, A. A. Avan, S. Aydar Arabian Journal of Chemistry 2015
- [8]. P. K. Aneesh, S. R. Nambiar, T. P. Rao, A. Ajayaghosh, Anal. Methods, 2014,6, 5322
- [9]. J. Ping, J. Wu, Y. Wang, Y. Ying, Biosensors and Bioelectronics, 2012, 34, 70
- [10] M. Amal Raj, S. Abraham John, Anal. Chim. Acta, 2013, 771, 14
- [11]. G. Liu, W. Ma, Y. Luo, D. Sun, S. Shao, *Journal of Analytical Methods in Chemistry*, 2014,10, 2014
- [12]. Z. H. Shenga, X.Q. Zhenga, J. Y. Xua, W.J. Baoa, F.B. Wanga, X.H. Xiaa, Biosensors and Bioelectronics, 2012, 34, 125
- [13]. D. Han, T. Han, C. Shan, A. Ivaska, L. Niua, *Electroanalysis* 2010, 22, 2001
- [14]. Y. Bao, J. Song, Y. Mao, D. Han, F. Yang, L. Niu, A. Ivaska, *Electroanalysis* 2011, 23, 878