Supplementary Information

A Simple Lateral Flow Biosensor for the Rapid Detection of Copper (II) Ion Based on Click Chemistry

Dou Wang, Chenchen Ge, Lin Wang, Xuerong Xing* and Lingwen Zeng*

Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.

* Correspondence:

Lingwen Zeng, Ph. D

E-mail: zeng6@yahoo.com; Fax: +86 20 32015245; Tel: +86 20 32015312 190 Kaiyuan Road, Guangzhou Science Park, Guangzhou, 510530, China

Xuerong Xing, Ph. D

E-mail: xing_xr@tib.cas.cn.

Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Tianjin, 300308, China.

Name	Sequence (5'→3')
Azide-DNA	ATACTCCCCAGGTGCCG
Alkyne/biotin-DNA	AGCTTCTTTCTAATACG
Control zone-DNA	CGTATTAGAAAGAAGCTCGTATTAGAAAGAAGCT
Test zone-DNA	CGGCACCTGGGGGGAGTATCGGCACCTGGGGGGAGTAT

Table S1 Sequences of the DNA used in this study

Table S2 Measurements of Cu^{2+} spiked in tap water and human serum

Somulas	Cu ²⁺ (µ	Recovery (%)	
Samples -	spiked	detected	
	2	1.92 ± 0.09	91.3%
Tap water	20	22.8 ± 0.79	109.3%
	200	190.4 ± 1.92	95.2%
	2	1.91 ± 0.12	95.5%
Human serum	20	19.2 ± 1.09	96%
	200	208.4 ± 1.92	104.2%

Table S3 Assessment of repeatability and reproducibility of the biosensor

researcher	optical intensity					CV
1	924	830	832	917	869	4.06%
	895	827	842	859	912	
	920	816	832	891	870	
2	830	920	811	870	845	4.38%
	823	831	865	841	851	
	921	890	845	835	824	
CV			4.23%			

Fig. S1 (A) The UV absorption spectrum and (B) TEM photographs of AuNPs used in the experiment. Scale bars are 100 nm.

	1	2	3	4	5	6	7	8	9
Azide DNA	2 uM	2 uM	2 uM	2 uM	2 uM	2 uM	2 uM	2 uM	2 uM
Cu^{2+}	0	200 uM	200 uM	200 uM	200 uM	200 uM	0	0	0
VC	0	500 uM	500 uM	500 uM	500 uM	500 uM	0	0	0
H_2O_2	0	0	200 uM	500 uM	1 mM	2 mM	500 uM	1 mM	2 mM
	1	2	3	4	5	6	7	8	9
	2						-	-	-

Fig. S2 PAGE of the azide-DNA under different concentrations of Cu^{2+} , sodium ascorbate and H_2O_2 .and ligation product. We designed an experiment to measure the DNA scission. We treated the azide-DNA with different concentrations of Cu^{2+} , sodium ascorbate and H_2O_2 and ran on PAGE. When only 200µM $Cu^{2+}/500µM$ sodium ascorbate were added to 2µM azide-DNA, no extensive DNA degradation occurred, the same thing happen when only H_2O_2 was added even at a high concentration of 2 mM. But when 200µM $Cu^{2+}/500µM$ sodium ascorbate was mixed with different concentrations of H_2O_2 , DNA degradation occurred, and with the increase of H_2O_2 , DNA degradation increased. In our method, no extra H_2O_2 was added, so there was not so much H_2O_2 produced by the reaction of ascorbate acid and Cu^{2+} . Therefore no extensive DNA degradation occurred.

	1	2	3
Alkyne DNA	2 uM	2 uM	2 uM
Cu^{2+}	0	200 uM	200 uM
VC	0	500 uM	500 uM
H_2O_2	0	0	500 uM
	1	2	3

Fig. S3 PAGE of the alkyne-DNA under different concentrations of Cu^{2+} , sodium ascorbate and H_2O_2 .