
Organic dyes for the sensitization of ZnO nanostructured photoanodes: effect of the anchoring functions

Jesús Idígoras,^{a*} Maxime Godfroy,^{b,c,d} Damien Joly,^{b,c,d} Anna Todinova,^a Pascale Maldivi,^{e,f} Gerko Oskam,^g Renaud Demadrille,^{b,c,d} and Juan A. Anta,^a

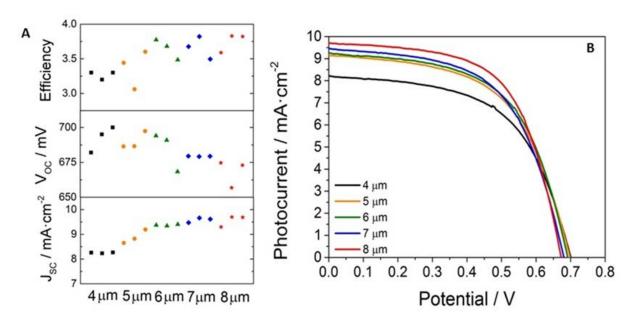
Molecule	thio	btdz	ph	C=C	CN	СООН	PO_3H_2
(trans)							
60RK1	6.5	40.86	11.26	18.09	2.27	4.51	-
MG100	7.95	43.08	16.97	17.95	3.42	-	0
MG41	3.86	23.29	18.77	28.35	4.80	2.21	-

Table S1: Contribution of the various groups to the LUMO (%). Thio = thiophene, btdz = benzothiadiazo, ph = phenyl (bearing the cyanoacrylic group). % are calculated from coefficients \geq 1%. Total is not = 100% (between 83-90%).

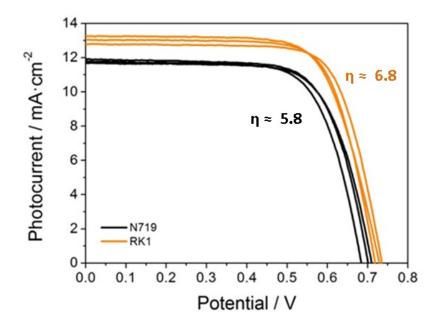
Figure S1: Current-voltage characteristics under 1-sun AM1.5 illumination for all the organic dyes using different sensitization times.

^a Área de Química Física, Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013, Seville, Spain.

^b Univ. Grenoble Alpes, INAC-SPRAM, F-38000 Grenoble, France


^c CNRS, INAC-SPRAM, F-38000 Grenoble, France

^d CEA, INAC-SPRAM, F-38000 Grenoble, France


^e Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France.

f CEA, INAC-SCIB, F-38000 Grenoble, France.

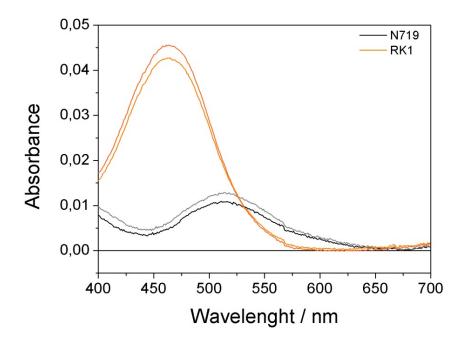

g Departamento de Física Aplicada, CINVESTAV-IPN, 97310, Mérida, Yucatán, México.

Figure S2: (A) Photovoltaic parameter (efficiency, open-circuit photovoltage and short-circuit photocurrent) for RK1-DSSCs using different thickness of photoanode. 3 samples have been measured. (B) Current-voltage for the best cell of each configuration. All DSSCs were characterized under 1-sun AM 1.5 illumination.

Figure S3: Current-voltage curves under 1 sun AM 1.5 illumination for RK1 and N719 using a $12\mu m$ TiO_2 film as photoanode.

Figure S4: Absorbance spectra of solution (0.1M KOH in methanol) containing the desorbed dye. From these spectra, the following dye loadings have been calculated: $4.6 \cdot 10^{-8}$ moles/cm² and $2.7 \cdot 10^{-8}$ moles/cm² for RK1- and N719-photoanodes respectively.

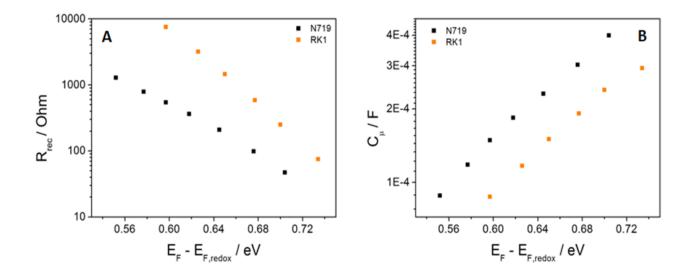


Figure 5: (A) Electron recombination resistance and (B) chemical capacitance data as extracted from EIS measurements in TiO_2 -DSSC with RK1 and N719 as sensitizers.

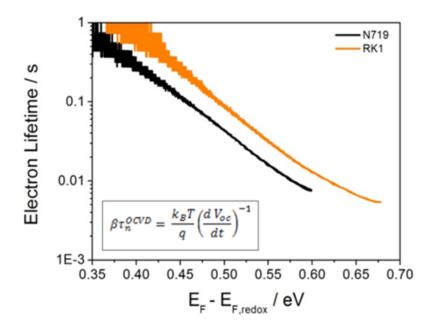
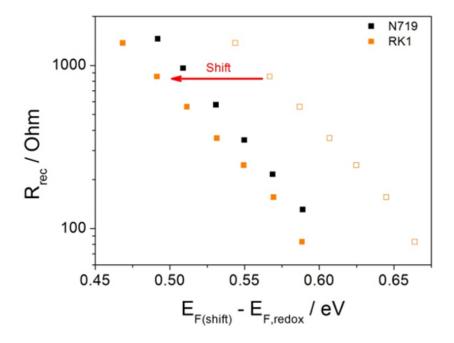
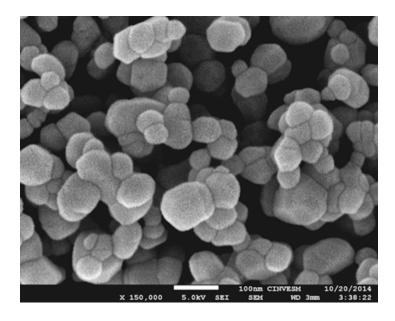




Figure S6: Electron lifetime as extracted from OCVD for N719-DSSC and RK1-DSSC.

Figure S7: Electron recombination resistance data as extracted from EIS measurements for N719-DSSC and RK1-DSSC after (filled squares) and before (empty squares) applying a shift on the Fermi level (both sample show the same capacitance at the same electron density).

Figure S8: SEM picture of a sintered ZnO nanostructured film used as photoanode