Supplementary data

In Situ Construction of SnO₂/g-C₃N₄heterojunction for Enhanced Visible-Light Photocatalytic Activity

Xi Chen^a, BanhongZhou^a, ShuangleiYang^a, HanshuoWu^a, YuxingWu^a, LaidiWu^a, Jun

Pan^{a,}*, Xiang Xiong^{a,}*

^aState Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, P. R. China

*To whom correspondence should be addressed: xiongx@csu.edu.cn or jun.pan@csu.edu.cn

Figure S1. Schematic representation of the in situ deposition of SnO_2 nanoparticles

on the layered $g-C_3N_4$ sheet.

Figure S1. TG analyses for pure g-C₃N₄, SnO₂/g-CN-88.13%, SnO₂/g-CN-72.12%, SnO₂/g-CN-54.19%, and SnO₂/g-CN-24.47%.

Figure S2. RhB adsorption of SnO₂/g-CN-72.12% photocatalysts in the dark. Inset shows RhB adsorption and degradation in the dark and light irradiation, respectively.

Figure S3. (a) Degradation rate of RhB under visible-light irradiation (>420 nm) with the presence of pure $g-C_3N_4$, SnO₂ and SnO₂/g-CN-72.12% nanocomposites.(b) a natural logarithm C₀/C fitting curves of all samples.