Supplementary Materials for "Effect of Electrolytes on the Electropolymerization and Optoelectronic Properties of Poly(3-methylselenophene)"

Baoyang Lu^{a,b}, Shijie Zhen^b, Shouli Ming^b, Jingkun Xu^{a,b,*}, Guoqun Zhao^{a,*}

^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of

Materials (Ministry of Education), Shandong University, Ji'nan, Shandong

250061, PR China

^b School of Pharmacy, Jiangxi Science & Technology Normal University,

Nanchang 330013, PR China

Email: xujingkun@tsinghua.org.cn and zhaogq@sdu.edu.cn.

Figure S2 ¹³C NMR spectrum of 3-methylselenophene.

Band (cm ⁻¹)				
3MeS	P3MeS from CH ₂ Cl ₂ -Bu ₄ NPF ₆	P3MeS from CH ₂ Cl ₂ -BFEE	P3MeS from BmimPF ₆	Assignment
3078, 3042	3163		3172, 3120	C-H stretching vibration of selenophene ring
2964, 2916	2966, 2884	2968, 2879	2968, 2880	C-H stretching vibration of – CH ₃
1442	1468	1467	1464	skeletal vibration of selenophene ring
1126	1151	1169	1169	C-C vibration of selenophene ring
887	-	=	-	out-of-plane bending vibration of adjacent C-H in the selenophene ring
	841	844	841	out-of-plane bending vibration 2,3,5-trisubstitution selenophene ring
750	741	746	748	out-of-plane bending vibration of isolated C-H in the selenophene ring
580	555	557	557	C-Se vibration in the selenophene ring

Table S1 Detailed peak assignments of FT-IR spectra for both the monomer and

polymer samples from different electrolytes

Figure S3 FT-IR spectra of P3MeS electrosynthesized in different electrolytes after CV scanning for 1000 cycles in the corresponding monomer-free electrolytes. CH₂Cl₂-Bu₄NPF₆ (0.10 mol L⁻¹) (A), CH₂Cl₂-5% BFEE (B) and ionic liquid

 $BmimPF_6(C)$.

Figure S4 Transmittance-time profiles of P3MeS films recorded during double step spectrochronoamperometry for the switching time of 10 s under the indicated

wavelength. A: P3MeS deposited from CH_2Cl_2 -Bu₄NPF₆ (0.10 mol L⁻¹) in monomerfree CH_2Cl_2 -Bu₄NPF₆ (0.10 mol L⁻¹) between -1.0~1.2 V; B: P3MeS deposited from BmimPF₆ in monomer-free CH_2Cl_2 -Bu₄NPF₆ (0.10 mol L⁻¹) between -1.0~1.8 V; C: P3MeS deposited from BmimPF₆ in monomer-free CH_2Cl_2 -Bu₄NPF₆ (0.10 mol L⁻¹)

between -1.0~1.8 V.