Supporting information for the manuscript entitled

Design and Synthesis of Conformationally Homogeneous Pseudo Cyclic Peptides through Amino Acid Insertion: Investigations on Their Self Assembly

Goutam Kulsi, Abhijit Ghorai, Basudeb Achari, Partha Chattopadhyay*

Chemistry Division, CSIR- Indian Institute of Chemical Biology (IICB), Kolkata – 700032. India.

partha@iicb.res.in

Table of contents

1. Preparation and Characterization of Compounds	S 03-S 11
2. ¹ H, ¹³ C and 2D NMR spectra and Conformational analysis	S 12-S 23
4. SEM, AFM sample preparation and FT-IR Spectra	S 24-S 25
5. Molecular Modelling results	S 26-S37

General Synthetic Experimental Details:

Solvents were dried over standard drying agents and freshly distilled prior to use. IR spectra between 400 and 4000 cm⁻¹ were recorded with an FT-IR spectrometer using KBr pellets. Mass spectra were obtained under high resolution (HRMS). ¹H and ¹³C NMR spectra were recorded in deuterated solvents on Bruker Avance (300 MHz) and Bruker (600 MHz) spectrometers. ¹H NMR multiplicity patterns are designated as singlet (s), doublet (d), triplet (t), or quartet (q); all first order splitting patterns are assigned. Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m) or broad (br). Column chromatographic separations were carried out on silica gel (60–120 mesh) and the cyclic peptides **1** and **2** were purified by preparative HPLC on Shimadzu UFLC (Model:LC-20AD) ODS-3-V, 250×4.6 mm, 5 μ m (C-18/AR/25) with methanol:water (45:55) as mobile phase. 1-Hydroxybenzotriazole (HOBt) and 1-[3-(dimethylamino)propyl]-3-ethyl-carbodiimide hydrochloride (EDCI) were purchased from Spectrochem. All other reagents and solvents were purchased from Sigma-Aldrich or Merck.

Preparation and Characterization of Compounds

3-Boc-Protected amino-3-deoxy-1,2-O-isopropylidene-a-D-xylo-furanosylaldehyde (4):

The 3-Boc protected amino-3-deoxy sugar diol (400 mg, 1.2 mmol) was dissolved in aqueous MeOH and sodium periodate (320 mg) was added portion wise at 0 °C. After 5 hr, the reaction mixture was filtered and evaporated, and the aqueous part was extracted with DCM (3×15 mL). The combined organic layer was dried over Na₂SO₄ and evaporated to furnish the aldehyde (287 mg, 70%) as colourless oil which was used for the next step without further purification.

3-Boc-Protected amino-3-deoxy-1,2-O-isopropylidene α -D-xylo-furanosyl alkyne (5):

The mixture of aldehyde (287 mg, 1 mmol) and diazo 2-oxopropyl dimethyl phosphonate ester (231.6 mg, 1.2 mmol) was stirred in dry MeOH at 0 °C. After 5 min, K_2CO_3 (207 mg, 1.5 mmol) was added and the mixture was stirred at RT for 12 hr till the completion of reaction (TLC). The solvent was evaporated, and the residue was quenched with water and extracted with ethyl acetate (3×30 mL). The combined organic extract was dried over Na₂SO₄ and evaporated to afford the crude alkyne **5** which was purified by column chromatography using PE:EA (5:1) to a white solid (180 mg, two step yield 45%).

¹**HNMR (CDCl₃, 300 MHz, \delta)**: 5.84 (d, J=3.6 Hz, 1H), 4.90 (m, 1H), 4.63 (m, 1H), 4.17 (m, 1H), 2.62 (s, 1H), 1.50 (s, 3H), 1.46 (s, 9H), 1.30 (s, 3H). ¹³**C NMR (CDCl₃, 75 MHz, \delta):**155.2, 112.3, 104.2, 84.0, 80.2, 69.3, 58.8, 28.3, 26.7, 26.1. **HRMS (M+Na)**⁺ Calculated for C₁₄H₂₁NO₅Na: 306.1317, found: 306.1322.

Boc-Protected sugar alkyne amide (6):

Compound **5** was stirred with TFA:DCM (1:5) at 0 °C for 1 hr, then at RT for another hour. After the completion of reaction, TFA and DCM were evaporated in high vac. To a stirred solution of Boc protected D-alanine (200 mg, 1.06 mmol) in dry DCM, EDC.HCl (202 mg, 1.06 mmol) and HOBt (143 mg, 1.06 mmol) were added at 0 °C. After stirring for 1hr at 0 °C, the deprotected sugar amine (300 mg, 1.06 mmol) was introduced to the reaction mixture and stirred for further 24 hr at room temperature under N₂. It was subsequently washed with 1(N) HCl (1×25 mL), 5% aq. NaHCO₃ (1×25 mL), and saturated NaCl solution (1×20 mL), and finally dried over Na₂SO₄. The organic layer was concentrated to give a yellow solid which was purified by column chromatography using PE:EA (1:1) as eluent to afford the corresponding Boc protected alkyne amide **6** as white solid (165 mg, 55%).

¹H NMR (CDCl₃, 300 MHz, δ): 6.45 (d, J=6.9 Hz, 1H), 5.84 (d, J=3.6 Hz, 1H), 4.95 (m, 1H), 4.59 (d, J=3.3 Hz, 1H), 4.41 (m, 1H), 4.16 (m, 1H), 2.61 (s, 1H), 1.51 (s, 3H), 1.45 (s, 9H), 1.38 (d, J = 6.9 Hz, 3H), 1.29 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz, δ):155.3, 112.4, 104.2, 83.6, 80.1, 69.0, 57.6, 31.0, 28.3, 26.6, 26.1, 18.1. HRMS (M+Na)⁺ Calculated for C₁₇H₂₆N₂O₆Na: 377.1689, Found: 377.1684.

Azidobenzyl sugar ester (7):

To a solution of sugar azido acid (500 mg, 2.1 mmol) in dry DMF at RT, benzyl bromide (525 mg, 3.0 mmol), NaHCO₃ (430 mg, 5.1 mmol) and catalytic amount of KI were added and left overnight. After completion of the reaction (TLC), it was extracted with DCM (3×20 mL). The combined organic layer was dried over Na₂SO₄ and evaporated to yield the crude product which

was purified by column chromatography using PE:EA (10:1) to yield benzyl azido ester 7 as a colourless liquid (400 mg, 80%).

¹H NMR (CDCl₃, **300** MHz, δ): 7.38 (m, 5H), 6.03 (d, J=3.3 Hz, 1H), 5.23-5.33 (m, 2H), 4.86 (d, J=3.6 Hz, 1H), 4.66 (d, J=3.6 Hz, 1H), 4.26 (d, J=3.6 Hz, 1H), 1.54 (s, 3H), 1.33 (s, 3H). ¹³C NMR (CDCl₃, **75** MHz, δ): 167.0, 134.8, 128.8, 128.6, 112.8, 105.2, 82.9, 78.4, 67.4, 66.9, 26.7, 26.3. HRMS (M+Na)⁺ Calculated for $C_{15}H_{17}N_3O_5Na$: 342.1066, Found: 342.1063.

Boc-Protected benzyl ester dimer (8):

To a mixture of azido benzyl ester 7 (200 mg, 0.6 mmol) and Boc protected sugar alkyne 6 (350 mg, 1 mmol) in 2:1 tert-butanol:H₂O (35 mL), CuSO₄.5H₂O (373.5 mg, 1.5 mmol) and TBTA (catalytic amount) were slowly added. Sodium L-ascorbate (396 mg, 2 mmol) was introduced to the reaction mixture; it was stirred for another 16 hr, quenched with saturated NaCl solution and extracted with DCM (3×25 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum to afford a yellow solid. The solid was purified by column chromatography (PE:EA, 1:2) to yield Boc protected benzyl ester **8** as white solid (161 mg, 46%).

¹H NMR (CDCl₃, **300** MHz, δ): 7.51 (s, 1H), 7.34-7.37 (m, 3H), 7.23-7.36 (m, 2H), 6.97 (d, J= 6.9 Hz, 1H), 6.31 (d, J= 3.3 Hz, 1H), 5.95 (d, J = 3.6 Hz, 1H), 5.37-5.42 (m, 2H), 5.12 (d, J= 4.2 Hz, 1H), 4.91-5.13 (m, 4H), 4.75 (d, J= 3.3 Hz, 1H), 4.39-4.42 (m, 1H), 4.06-4.11 (m, 1H), 1.62 (s, 3H), 1.60 (s, 3H), 1.57 (s, 6H), 1.44 (s, 9H), 1.25 (d, J = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz, δ):172.9, 165.9, 155.3, 142.9, 134.3, 128.8, 128.7, 123.1, 113.2, 112.1, 105.6, 104.2, 84.2, 83.4, 80.1, 67.7, 66.4, 58.0, 28.3, 26.6, 26.1, 26.0. HRMS (M+Na)⁺ Calculated for $C_{32}H_{43}N_5O_{11}Na : 696.2857$, found: 696.2860. Boc-Protected benzyl ester pentamer (11):

Compound 8 was divided into two parts. One part (60 mg, 0.08 mmol) was dissolved in EtOAc, 10% w/w Pd-C (15 mg) was added and the mixture was stirred for 2 hr under H₂ at one atmospheric pressure. After the completion of reaction (TLC), the mixture was filtered through a small celite pad, washed with MeOH (2×10 mL) and the combined filtrate was concentrated under reduced pressure to afford the corresponding acid as colorless semisolid 9 (50 mg, 85%). The other part was treated with 5:1 DCM:TFA at 0 °C for 1 hr, then at RT for another hour. After the completion of the reaction both TFA and DCM were evaporated to get Boc free amine 10.

To a stirred solution of Boc protected acid **9** (50 mg, ca. 0.071 mmol) in dry CH₂Cl₂, EDC.HCl (14 mg, 0.071 mmol) and HOBt (9 mg, 0.071 mmol) were added at 0 °C. After stirring for 1 hr at 0 °C, the Boc free amine **10** (40 mg, ca. 0.071 mmol) and 0.4 mL DIEA were introduced to the reaction mixture and stirred for further 12 hr at room temperature under N₂. It was then washed with 1(N) HCl (1×25 mL), 5% aq. NaHCO₃ (1×25 mL), and saturated NaCl solution (1×20 mL), and dried over anhydrous Na₂SO₄. The organic layer was concentrated to give a yellow solid which was purified by column chromatography using 3% MeOH in DCM as eluent to afford the methyl ester **11** (27 mg, 55%) as a white solid.

¹H NMR (CDCl₃, **300** MHz, δ): 7.66 (s, 1H), 7.58 (s, 1H), 7.36-7.49 (m, 4H), 6.94- 6.99 (m, 1H), 6.25-6.33 (m, 2H), 5.94-6.09 (m, 2H), 5.48-5.52 (m, 1H), 5.36-5.42 (m, 2H), 5.29-5.32 (m, 1H), 5.11-5.14 (m, 2H), 4.89-5.06 (m, 4H), 4.85 (d, J = 3.6 Hz, 1H), 4.73-4.78 (m, 1H), 4.57 (d, J = 3.6 Hz, 1H), 4.23-4.46 (m, 2H), 4.10-4.20 (m, 1H), 1.59 (s, 24 H), 1.45 (s, 9H), 1.25 (m, 6H). ¹³C NMR (CDCl₃, 75 MHz, δ): 173.0, 165.8, 155.4, 142.6, 134.5, 128.9, 128.7, 123.5, 113.2, 112.1, 105.7, 104.3, 104.1, 84.1, 83.3, 79.4, 67.7, 66.4, 58.1, 39.6, 28.3, 26.6, 26.1. **HRMS** $(M+Na)^+$ Calculated for $C_{52}H_{70}N_{10}O_{19}Na$: 1161.4716, Found: 1161.4712.

Cyclic compound (1):

To a solution of compound **11** (60 mg, 0.05 mmol) in EtOAc, 10% w/w Pd-C (15 mg) was added and the mixture was stirred for 2 hr under H_2 at one atmospheric pressure. After the completion of reaction (TLC), the mixture was filtered through a small pad of celite, washed with MeOH (2×10 mL) and the combined filtrate was concentrated under reduced pressure to afford the corresponding acid as colorless semisolid.

To a stirred solution of Boc tetramer acid (40 mg, 0.04 mmol) in dry DCM, EDC.HCl (8 mg, 0.04 mmol) was added at 0 °C. After stirring at 0 °C for 10 min, pentafluoro phenol (1 to 2 drops) was introduced to the reaction mixture and stirred overnight at room temperature under N₂. It was washed subsequently with 1(N) HCl (1×25 mL) and saturated NaCl solution (1×20 mL), and dried over Na₂SO₄. After evaporating the solvent, the residue was washed with n-hexane four times to furnish the tetrameric Boc-pentaflourophenyl ester (85%) which was treated with 1:5 TFA:DCM, at 0 °C for 1hr then at RT for another 1 hr. After completion of the reaction, TFA and DCM were evaporated in high vac, 0.4 mL dry DIEA was added, and the reaction mixture was allowed to cyclize in dry acetonitrile solvent at 70-80 °C for 3 to 4 hr. Finally, the reaction mixture was concentrated with EtOAc (3×10 mL) and dried over Na₂SO₄; the combined extract was concentrated under reduced pressure to afford the crude cyclic peptide **1** which was purified by RP-HPLC (C18 column, CH₃CN:H₂O).

¹H NMR (CD₃CN, 600 MHz, δ): 7.64 (s, 1H), 6.87 (d, J = 7.2 Hz, 1H), 6.40 (d, J = 7.2 Hz, 1H), 6.25 (d, J = 3.6 Hz, 1H), 6.14 (d, J = 3.6 Hz, 1H), 5.42 (d, J = 4.2 Hz, 1H), 5.32 (d, J = 4.2 Hz, 1H), 5.07 (d, J = 3.6 Hz, 1H), 4.93 (d, J = 4.2 Hz, 1H), 4.70 (d, J = 4.2 Hz, 1H), 4.32 (dd, J=5.4, J= 7.2,1H), 4.05-4.12 (m, 1H), 1.55 (s, 6H), 1.35 (s, 6H), 1.12 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz, δ):171.1, 166.1, 141.5, 139.3, 131.6, 125.6, 113.3, 111.9, 106.0, 104.3, 84.9, 82.6, 79.9, 65.4, 57.5, 48.1, 29.6, 29.3, 26.6, 26.2. HRMS (M+Na)⁺ Calculated for C₄₀H₅₄N₁₀O₁₆Na: 953.3617, Found: 953.3623.

Boc-Protected methyl ester dimer (14):

To a mixture of azido sugar methyl ester **13** (214 mg, 1 mmol) and Boc protected sugar alkyne **5** (460 mg, 1.5 mmol) in 2:1 tert-butanol:H₂O (35 mL), CuSO₄.5H₂O (373.5 mg, 1.5 mmol) and TBTA (catalytic amount) were slowly added. Sodium L-ascorbate (396 mg, 2 mmol) was introduced to the reaction mixture; it was stirred for another 16 hr, quenched with saturated NaCl solution and extracted with DCM (3×25 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum to afford a yellow solid. The solid was purified by column chromatography (PE: EA, 1:2) to yield Boc protected methyl ester **14** as white solid (211 mg, 46%).

¹**H NMR** (**CDCl**₃, **300 MHz**, **δ**): 7.63 (s, 1H), 6.72 (t, J = 3.6 Hz, 1H), 6.39 (d, J = 3.3 Hz, 1H), 5.92 (d, J = 3.6 Hz, 1H), 5.42 (d, J = 3.6 Hz, 1H), 5.30 (d, J = 4.2 Hz, 1H), 5.19-5.22 (m, 2H), 5.01 (d, J = 4.2 Hz, 1H), 4.45 (s, 1H), 4.23-4.26 (m, 1H), 3.68 (s, 3H), 3.18-3.27 (m, 2H), 2.24-2.32 (m, 1H), 1.62 (s, 6H), 1.57 (s, 6H), 1.39 (s, 9H). ¹³C NMR (CDCl₃, 75 MHz, **δ**):171.9, 171.1, 166.1, 142.1, 125.0, 113.3, 112.0, 106.7, 103.9, 82.9, 80.3, 65.9, 60.3, 51.8, 34.0, 33.3, 29.6, 28.2, 26.8, 26.5, 26.3, 26.1. HRMS (M+Na)⁺ Calculated for $C_{26}H_{39}N_5O_{11}Na$: 620.2544, Found: 620.2538.

Boc-Protected methylester pentamer (17):

Compound **14** was divided into two parts. To a stirred solution of one part (60 mg, 0.10 mmol) in 15 mL THF:H₂O (3:1) at 0 °C, LiOH.H₂O (13.2 mg, 0.321 mmol) was added and stirred for 1 hr. The reaction mixture was acidified with aqueous sodium bisulphate solution and extracted with ethyl acetate (6×10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to furnish the corresponding acid **15** as white solid (57 mg, 95 %).

The other part (60 mg, 0.10 mmol) was treated with TFA:DCM (1:5) at 0 °C for 1 hr then at RT for another 1 hr; after the completion of the reaction TFA and DCM were evaporated in high vac to get Boc free amine **16** (50 mg, 82%)

To a stirred solution of Boc protected acid **15** (57 mg, ca. 0.10 mmol) in dry CH₂Cl₂, EDC.HCl (19 mg, 0.10 mmol) and HOBt (13 mg, 0.10 mmol) were added at 0 °C. After stirring for 1hr at 0 °C, the Boc free amine **16** (50 mg, ca. 0.10 mmol) and 0.4 mL DIEA were introduced to the reaction mixture and stirred for further 12 hr at room temperature under N₂. It was then successively washed with 1(N) HCl (1×25 mL), 5% aq. NaHCO₃ (1×25 mL), and saturated NaCl solution (1×20 mL), and dried over anhydrous Na₂SO₄. The organic layer was concentrated to give a yellow solid which was purified by column chromatography using 4% MeOH and DCM as eluent to afford the corresponding pentamer methyl ester **17** (31 mg, 55%) as white solid.

¹H NMR (CDCl₃, **300** MHz, **δ**): 8.01 (s, 1H), 7.83 (s.1H), 7.66 (s, 1H), 6.59-6.73 (m, 2H), 6.38-6.43 (m, 2H), 6.04-6.15 (m, 2H), 5.90 (d, J = 3.3 Hz, 1H), 5.82 (d, J = 2.7Hz, 1H), 5.55 (d, J = 3.3 Hz, 1H), 5.50 (d, J = 3.3 Hz, 1H), 5.31-5.41 (m, 2H), 5.17-2.26 (m, 2H), 5.00-5.02 (m, 2H), 4.63-4.78 (m, 3H), 4.20-4.33 (m, 2H), 3.67 (s, 3H), 3.14-3.35 (m, 3H), 2.15-2.25 (m, 2H), 1.66 (s, 6H), 1.61 (s, 6H), 1.58 (s, 12H), 1.38 (s, 9H). ¹³C NMR (CDCl₃, 75 MHz, **δ**):172.1, 170.2, 166.4, 142.5, 125.0, 113.4, 113.1, 106.9, 82.9, 80.6, 65.6, 60.4, 52.0, 34.3, 29.6, 28.2, 26.8, 26.6, 26.4, 26.

26.3, 26.1, 26.0. **HRMS** (M+Na)⁺ Calculated for $C_{46}H_{66}N_{10}O_{19}Na$: 1085.4403, Found: 1085.4398.

Cyclic compound (2):

To a stirred solution of compound **17** (60 mg, 0.05 mmol) in 15 mL THF:H₂O (3:1) at 0 °C, LiOH.H₂O (13.2 mg, 0.321 mmol) was added and the mixture stirred for 1 hr. The reaction mixture was acidified with aqueous sodium bisulphate solution and extracted with ethyl acetate (6×10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to furnish the corresponding acid as white semi solid (57 mg, 95 %).

To a stirred solution of Boc tetramer acid (40 mg, 0.03 mmol) in dry CH₂Cl₂, EDC.HCl (6 mg, 0.03 mmol) was added at 0 °C. After stirring at 0 °C for 10 min, pentafluoro phenol (1 to 2 drops) was introduced to the reaction mixture and stirred overnight at room temperature under N₂. It was diluted with DCM, washed with 1(N) HCl (1×25 mL) and saturated NaCl solution (1×20 mL), and dried over Na₂SO₄. After evaporating the solvent, the residue was washed with n-hexane four times to furnish the tetrameric Boc-pentaflourophenyl ester (85%) which was treated with TFA:DCM (1:5) at 0 °C for 1 hr, then at RT for another hour. After completion of the reaction TFA and DCM were evaporated, 0.4 mL dry DIEA was added to the reaction mixture and then heated in dry acetonitrile solvent at 70-80 °C for 3 to 4 hr. After the completion of reaction (TLC), the reaction mixture was extracted with EtOAc (3×5 mL) and dried over Na₂SO₄; the combined filtrate was concentrated under reduced pressure to afford the crude cyclic peptide **2** which was purified by RP-HPLC (C18 column/CH₃CN/H₂O).

¹**H** NMR (CDCl₃, 300 MHz, δ): 7.74 (s, 2H), 7.16 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 3.9 Hz, 2H), 6.25 (d, J = 3.0 Hz, 2H), 6.16 (d, J = 3.6 Hz, 2H), 5.35 (d, J = 3.3 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 2H), 5.35 (d, J = 3.4 Hz, 2H), 5.31 (d, J = 5.1 Hz, 3H), 5.31 (d, J = 5.1 Hz, 3H)

2H), 5.10 (d, J = 4.8 Hz, 2H), 4.85 (d, J = 3.3 Hz, 2H), 4.70-4.67 (m, 4H), 3.53-3.58 (m, 2H), 3.14-3.20 (m, 2H), 2.02-2.09 (m, 2H), 1.66-1.76 (m, 2H), 1.57 (s, 6H), 1.55 (s, 6H), 1.37 (s, 6H), 1.30 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz, δ):171.0, 166.6, 141.9, 139.3, 131.7, 125.7, 113.6, 112.0, 106.4, 104.2, 84.4, 84.1, 80.1, 72.1, 66.1, 57.0, 29.5, 27.2, 26.6, 26.2. HRMS (M+Na)⁺ Calculated for C₄₀H₅₄N₁₀O₁₆Na: 953.3617, Found: 953.3611.

Structural Determination by Multidimensional NMR:

NMR Spectra (1D and 2D) of the pseudo cyclic peptides **1** and **2** were recorded in Bruker Avance-600 MHz with TCI CRYOPROBE in Acetonitrile-d₃ or (2:3) CDCl₃:CCl₄ or CDCl₃ using tetra methyl silane as internal standard and chemical shifts are shown in ppm. All the two dimensional NMR studies (DQF COSY, ROESY) were carried out in phase-sensitive mode. The 2D spectra were acquired with 2×256 or 2×192 free induction decays (FID) containing 16-32 scans with relaxation delays of 1.5 s. The ROESY experiments were performed with mixing time of 0.2 to 0.3 s and the TOCSY experiments were performed with mixing time of 0.02 s. The two dimensional data were processed with Gaussian apodization in both the dimensions. The spectra (One Dimensional, DQF-COSY and ROESY) are given below.

¹H-¹H ROESY cross peaks at 300 ms were assigned and integrated and the respective volumes were converted to distance restraints. When symmetric pairs of cross peaks were present, the larger peak volume was converted to the distance restraint. Cross-peaks were categorized as strong, medium, weak, and very weak based on their intensities. Inter-proton distances (r) were derived from the ROE intensities (S) with the known relationship $r= c(S)^{-1/6}$, where c is a coefficient determined on the basis of ROE corresponding to a known distance. The distance constraints were determined from volume integrals of ROESY cross peaks using reference distance 2.40 Å for vicinal cis-sugar ring protons. The conservative upper distances were fixed respectively as 3.5, 4.0, 4.5 and 6.0 Å and the lower distance limit was fixed at 2.0 Å. Corrections of 0.1 Å were applied to the upper bound distances derived from NOEs to account for any spin diffusion effect. The dihedral angles (ϕ) were calculated from the ³J_{HN-Hβ} coupling constants measured from the ¹H-¹H DQF-COSY spectra using the modified Karplus¹ equation. The ϕ 's thus obtained were used as dihedral restraints.

1. C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw, C. Altona, Org. Magn. Reson. 1981, 15, 43.

¹H and ¹³C NMR Spectra:

Fig 1:¹H NMR of macrocyclic peptide 1 at 298K in CD₃CN.

Fig 2:¹H NMR of macrocyclic peptide 1 at 298 K in CDCl₃

Fig 3:¹³C NMR of macrocyclic peptide 1 at 298 K in CDCl₃

2D NMR Study:

Fig 4:¹H-¹H DQF-COSY Spectrum of the cyclic peptide **1** at 298 K in CD₃CN

Fig 5: Partial ¹H-¹H ROESY Spectrum of the cyclic peptide 1 at 298 K in CD₃CN

Fig 6: Partial ¹H-¹H ROESY Spectrum of the cyclic peptide **1** at 298 K in (2:3) CDCl₃:CCl₄ (600 MHz, 298 K).

Fig 7:¹H NMR of macrocyclic peptide 2 at 298 K in CDCl₃

Fig 8:¹³C NMR of macrocyclic peptide 2 at 298 K in CDCl₃

Fig 9:1H-1H DQF-COSY Spectrum of the cyclic peptide 2 at 298 K in CDCl₃

Fig 10: ¹H-¹H ROESY Spectrum of the cyclic peptide 2 at 298 K in CDCl₃

Conformational analysis

¹H NMR spectra of the macrocyclic peptide **1** were recorded in polar and nonpolar solvents (CD₃CN, CCl₄-CDCl₃ methanol- d_4). Spectra (CD₃CN) of all entries in Table-1 and spectra (CDCl₃) of entries Table-2 were assigned from the corresponding double-quantum-filtered 2D DQF-COSY as well as ROESY spectra.

Residue name	Ηα	Ηβ	Ηγ	Нδ	NH	N'H	TrH
S ₁	5.34 (d) J _{Hα,Hβ} =4.2	5.46 (d) J _{Hβ,Hα} =4.2	5.00 (d) J _{Hγ,Hδ} =3.6	6.14 (d) J _{Hγ,Hδ} =3.6			7.64 (s)
S ₂	4.94 (d) $J_{H\alpha,H\beta}=4.2$	4.28 (dd) $J_{NH,H\beta}=7.2$ $J_{H\alpha,H\beta}=4.2$	4.60 (d) $J_{H\gamma,H\delta}=3.9$	6.24(d) $J_{H\gamma,H\delta}=3.6$	6.40 (d) J _{NH,Hα} =7.2		
Ala	4.05 (m)					6.87 (d) J _{NH,Hβ} =7.2	

Others: Methyl signals at 1.55, 1.35, 1.12.

Table 1: ¹H Chemical shifts (ppm) and coupling constants (Hz) of compound 1 (CD₃CN, 600MHz, 300 K)

Residue	Ηα	Ηβ	Ηγ	Нδ	NH	N'H	TrH
S1	5.10 (d)	5.31 (d)	4.85 (d)	6.25 (d)			7.74
	J _{Hα,Hβ} =4.8	J _{Hβ,Hα} =5.1	$J_{H\gamma,H\delta}=3.3$	$J_{H\gamma,H\delta}=3.0$			(s)
S2	5.35 (d)	4.67 (m)	4.70 (d)	6.16 (d)	7.16 (d)		
	$J_{H\alpha,H\beta}=3.3$		$J_{H\gamma,H\delta}=3.0$	J _{Нγ,Нδ} =3.6	J _{NH,Hβ} =8.4		
β-Ala	2.04 (m)	3.55 (m),				6.78 (dd)	
						J _{NH,Hβ} =3.9	
		3.17 (m)				$J_{H\alpha,H\beta} = 11.2$	

Others: Methyl signals at 1.57, 1.55, 1.37, 1.30.

Table 2: ¹H Chemical shifts (ppm) and coupling constants (Hz) of compound 2 (CDCl₃, 600 MHz, 300 K)

Residue	Atom	Residue	Atom	Distance (Å)
Sugar (S ₂)	NH	Sugar (S ₂)	C _β H	2.7-3.05
Sugar (S ₂)	NH	D-Ala	$C_{\alpha}H$	3.2-3.85
Sugar (S ₁)	C _α H	D-Ala	NH	3.7-4.3
D-Ala	NH	Sugar (S_1)	$C_{\alpha}H$	3.25-3.85
Triazole	СН	Sugar (S ₁)	$C_{\beta}H$	3.1-3.45
Sugar (S ₂)	C _α H	Triazole	СН	2.95-3.2

Table 3: Inter proton distances of compound 1 calculated from NMR results.

Fig 11: Strong and weak NOE connectivities of compound 1.

SEM and AFM Images of Macrocyclic Peptide 1:

SEM image was achieved by SUPRA 35VP-30KV-resolution 2.5 nm, Carl Zeiss (Germany).

AFM Sample Preparation and Imaging

Aliquots (10 μ L) of the sample 1 were deposited onto freshly cleaved muscovite Ruby mica sheet (ASTM V1 Grade Ruby Mica from MICAFAB) during 15-30 min. After 15 min, the sample was dried using a vacuum dryer. Sometimes the sample was gently washed with 0.5 mL Milli-Q water to remove the molecules that were not firmly attached to mica and the sample dried as mentioned above.

AAC mode AFM was performed using a Pico plus 5500 ILM AFM (Agilent Technologies USA) with a piezo scanner with maximum range of 9 μ m. Micro fabricated silicon cantilevers used, 225 μ m in length with a nominal spring force constant of 21-98 N/m, were from Nano sensors, USA. The cantilever oscillation frequency was tuned into resonance frequency, which was 150-300 kHz. The images (256 by 256 pixels) were captured with a scan size of between 0.5 and 5 μ m at the scan speed rate of 0.5 lines/s. Images were processed by flattening using Pico view1.4 version software (Agilent Technologies, USA). Image manipulation has been done through Pico Image Advanced version software (Agilent Technologies, USA).

FT-IR Study:

FT-IR Measurements were made on a JASCO FT/IR-400 Spectrophotometer using 5-10 mM solution in CHCl₃ of compound **1** and **2** placed in a NaCl cell.

Fig 12: FT-IR spectrum of macrocyclic peptide 1 in CHCl₃ (20 mM)

ig 13: FT-IR Spectrum of macrocyclic peptide 2 in CDCl₃(15 mM)

 \mathbf{F}

Molecular Modelling Studies

Construction of molecular model and structural analysis of different obtained conformations were achieved by Discovery studio 4.0. The Discover software was used for molecular modeling calculation and also energy minimization. The energy minimized structure was obtained by using a modified CHARMm force field. Structure refinement was carried out by incorporating NMR derived distance and torsion angle constraints. Energy minimization of each structure was carried out by the steepest descent method followed by conjugate gradient method, until an RMS deviation of 0.001 Kcal was arrived.

 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 1983, 4, 187.

Fig 14: Possible energy minimized structures of a) pseudo cyclic peptide 1 and b) cyclic peptide 2

Fig 15: A typical schematic side view for self-assembly of compound 1 by molecular modeling: only S2 of upper two conformations and S1 of lower two conformations are shown, without isopropylidene moiety for the sake of clarity.

Co-ordinates of compound 1

REMARK	Aco	celry	s Dis	covery S	tudio PDB	file			
HETATM	1	N21	KWH	1 1	0.508	-6.163	2.034	1.00	0.00
HETATM C	2	C12	KWH	1	1.694	-6.084	2.685	1.00	0.00
HETATM H	3	6H34	KWH	1	0.226	-5.420	1.423	1.00	0.00
HETATM N	4	N22	KWH	1	-0.941	-0.047	-1.793	1.00	0.00
HETATM N	5	Nl	KWH	1	-1.142	0.183	-3.114	1.00	0.00
HETATM N	6	N28	KWH	1	0.152	-0.861	-1.899	1.00	0.00
HETATM C	7	C24	KWH	1	0.485	-1.230	-3.172	1.00	0.00
HETATM C	8	C34	KWH	1	-0.371	-0.478	-3.995	1.00	0.00
HETATM H	9	H11	KWH	1	1.246	-1.924	-3.493	1.00	0.00
HETATM C	10	C25	KWH	1	0.901	-1.247	-0.678	1.00	0.00
HETATM O	11	016	KWH	1	2.102	-6.914	3.491	1.00	0.00
HETATM C	12	C16	KWH	1	2.539	-4.855	2.315	1.00	0.00
HETATM N	13	N18	KWH	1	2.098	-4.300	1.039	1.00	0.00
HETATM C	14	C21	KWH	1	1.342	-3.184	0.961	1.00	0.00
HETATM O	15	024	KWH	1	0.937	-2.548	1.927	1.00	0.00
HETATM C	16	C27	KWH	1	4.017	-5.242	2.189	1.00	0.00
HETATM H	17	5H68	KWH	1	2.417	-4.103	3.097	1.00	0.00
HETATM H	18	6H68	KWH	1	4.620	-4.380	1.906	1.00	0.00
HETATM H	19	7H68	KWH	1	4.161	-6.009	1.427	1.00	0.00
HETATM H	20	8H68	KWH	1	4.409	-5.624	3.132	1.00	0.00
HETATM H	21	H14	KWH	1	2.342	-4.762	0.187	1.00	0.00
НЕТАТМ С	22	C1	KWH	1	1.056	-2.766	-0.502	1.00	0.00
НЕТАТМ Н	23	9H19	KWH	1	0.417	-0.783	0.183	1.00	0.00
НЕТАТМ О	24	028	KWH	1	2.192	-3.079	-1.285	1.00	0.00
HETATM H	25	9H2O	KWH	1	0.183	-3.315	-0.856	1.00	0.00

НЕТАТМ С	26	C30	KWH	1	3.119	-2.007	-1.273	1.00	0.00
НЕТАТМ С	27	C2	KWH	1	2.345	-0.778	-0.813	1.00	0.00
HETATM	28	032	KWH	1	4.113	-2.203	-0.296	1.00	0.00
U HETATM H	29	9H22	KWH	1	3.570	-1.879	-2.257	1.00	0.00
HETATM O	30	035	KWH	1	2.887	-0.462	0.444	1.00	0.00
НЕТАТМ Н	31	3H23	KWH	1	2.470	0.073	-1.485	1.00	0.00
НЕТАТМ С	32	C38	KWH	1	4.148	-1.081	0.558	1.00	0.00
HETATM C	33	C39	KWH	1	4.388	-1.513	2.006	1.00	0.00
НЕТАТМ Н	34	3H24	KWH	1	5.336	-2.042	2.105	1.00	0.00
НЕТАТМ Н	35	4H24	KWH	1	3.597	-2.174	2.354	1.00	0.00
НЕТАТМ Н	36	5H24	KWH	1	4.413	-0.650	2.671	1.00	0.00
HETATM C	37	C42	KWH	1	5.232	-0.114	0.069	1.00	0.00
НЕТАТМ Н	38	6H24	KWH	1	6.218	-0.577	0.114	1.00	0.00
НЕТАТМ Н	39	7H24	KWH	1	5.255	0.789	0.679	1.00	0.00
НЕТАТМ Н	40	8H24	KWH	1	5.052	0.185	-0.963	1.00	0.00
HETATM C	41	C1	KWH	3	-0.432	-0.372	-5.509	1.00	0.00
HETATM C	42	C4	KWH	3	-1.806	0.050	-6.030	1.00	0.00
НЕТАТМ С	43	C7	KWH	3	-1.732	-0.407	-7.479	1.00	0.00
НЕТАТМ Н	44	Н9	KWH	3	-2.691	-0.716	-7.894	1.00	0.00
НЕТАТМ С	45	C10	KWH	3	-0.703	-1.532	-7.476	1.00	0.00
НЕТАТМ О	46	013	KWH	3	-0.213	-1.615	-6.146	1.00	0.00
HETATM N	47	N13	KWH	3	-2.867	-0.676	-5.336	1.00	0.00
НЕТАТМ Н	48	4H24	KWH	3	-1.989	1.119	-5.917	1.00	0.00
НЕТАТМ С	49	C16	KWH	3	-4.151	-0.325	-5.589	1.00	0.00
НЕТАТМ Н	50	3H25	KWH	3	-2.637	-1.349	-4.631	1.00	0.00
НЕТАТМ О	51	018	KWH	3	-4.495	0.473	-6.454	1.00	0.00
НЕТАТМ С	52	C19	KWH	3	-5.190	-1.009	-4.686	1.00	0.00

НЕТАТМ О	53	024	KWH	3	0.315	-1.114	-8.357	1.00	0.00
НЕТАТМ Н	54	0Н86	KWH	3	-1.122	-2.484	-7.801	1.00	0.00
HETATM C	55	C27	KWH	3	-0.028	0.118	-8.945	1.00	0.00
HETATM O	56	030	KWH	3	-1.164	0.607	-8.273	1.00	0.00
НЕТАТМ С	57	C2	KWH	3	-0.381	-0.114	-10.416	1.00	0.00
НЕТАТМ Н	58	9H88	KWH	3	-0.678	0.817	-10.898	1.00	0.00
НЕТАТМ Н	59	0Н89	KWH	3	-1.207	-0.818	-10.509	1.00	0.00
НЕТАТМ Н	60	1H89	KWH	3	0.470	-0.523	-10.962	1.00	0.00
НЕТАТМ С	61	C30	KWH	3	1.129	1.104	-8.778	1.00	0.00
НЕТАТМ Н	62	2Н89	KWH	3	0.882	2.073	-9.211	1.00	0.00
НЕТАТМ Н	63	ЗН89	KWH	3	2.031	0.734	-9.265	1.00	0.00
НЕТАТМ Н	64	4H89	KWH	3	1.358	1.257	-7.724	1.00	0.00
HETATM H	65	9Н55	KWH	3	0.324	0.339	-5.844	1.00	0.00
НЕТАТМ С	66	C28	KWH	3	-6.224	-1.758	-5.531	1.00	0.00
НЕТАТМ Н	67	Н96	KWH	3	-5.681	-0.236	-4.092	1.00	0.00
HETATM H	68	Н97	KWH	3	-6.953	-2.257	-4.892	1.00	0.00
HETATM H	69	Н98	KWH	3	-5.751	-2.521	-6.150	1.00	0.00
HETATM H	70	Н99	KWH	3	-6.768	-1.079	-6.188	1.00	0.00
НЕТАТМ С	71	C1	KWH	5	-0.479	-7.121	2.527	1.00	0.00
НЕТАТМ С	72	C4	KWH	5	-1.856	-6.963	1.867	1.00	0.00
НЕТАТМ Н	73	Н9	KWH	5	-0.550	-6.992	3.608	1.00	0.00
HETATM O	74	07	KWH	5	-1.815	-7.838	0.760	1.00	0.00
НЕТАТМ Н	75	9H56	KWH	5	-2.627	-7.315	2.553	1.00	0.00
HETATM C	76	C10	KWH	5	-1.127	-9.008	1.159	1.00	0.00
НЕТАТМ С	77	C13	KWH	5	-0.062	-8.541	2.136	1.00	0.00
НЕТАТМ Н	78	ОН58	KWH	5	0.935	-8.577	1.698	1.00	0.00
НЕТАТМ О	79	012	KWH	5	-1.967	-9.841	1.923	1.00	0.00

НЕТАТМ Н	80	6H75	KWH	5	-0.719	-9.553	0.307	1.00	0.00
НЕТАТМ С	81	C15	KWH	5	-1.335	-10.177	3.139	1.00	0.00
HETATM	82	018	KWH	5	-0.150	-9.420	3.231	1.00	0.00
O HETATM C	83	C2	KWH	5	-0.973	-11.664	3.122	1.00	0.00
НЕТАТМ Н	84	1H77	KWH	5	-0.459	-11.952	4.039	1.00	0.00
НЕТАТМ Н	85	2H77	KWH	5	-0.314	-11.892	2.284	1.00	0.00
HETATM	86	3H77	KWH	5	-1.865	-12.283	3.025	1.00	0.00
л НЕТАТМ С	87	C18	KWH	5	-2.255	-9.825	4.309	1.00	0.00
HETATM H	88	4H77	KWH	5	-1.785	-10.070	5.262	1.00	0.00
НЕТАТМ Н	89	5H77	KWH	5	-3.196	-10.371	4.245	1.00	0.00
HETATM H	90	6H77	KWH	5	-2.485	-8.760	4.317	1.00	0.00
HETATM C	91	C1	KWH	6	-2.216	-5.547	1.457	1.00	0.00
HETATM N	92	N4	KWH	6	-1.948	-4.415	2.130	1.00	0.00
HETATM N	93	N7	KWH	6	-2.400	-3.244	1.610	1.00	0.00
HETATM N	94	N10	KWH	6	-3.091	-3.754	0.546	1.00	0.00
HETATM C	95	C13	KWH	6	-2.934	-5.095	0.337	1.00	0.00
HETATM C	96	C8	KWH	6	-3.970	-2.874	-0.268	1.00	0.00
НЕТАТМ Н	97	Н10	KWH	6	-3.297	-5.693	-0.485	1.00	0.00
НЕТАТМ С	98	C11	KWH	6	-3.615	-2.863	-1.763	1.00	0.00
НЕТАТМ Н	99	H41	KWH	6	-3.958	-1.870	0.159	1.00	0.00
HETATM O	100	014	KWH	6	-4.252	-4.025	-2.269	1.00	0.00
НЕТАТМ С	101	C17	KWH	6	-5.462	-4.267	-1.568	1.00	0.00
НЕТАТМ С	102	C20	KWH	6	-5.373	-3.471	-0.269	1.00	0.00
HETATM N	103	N22	KWH	6	-4.553	-1.959	-3.781	1.00	0.00
НЕТАТМ Н	104	H87	KWH	6	-4.427	-2.916	-4.047	1.00	0.00
НЕТАТМ С	105	C21	KWH	6	-4.180	-1.637	-2.523	1.00	0.00
НЕТАТМ Н	106	9H10	KWH	6	-2.537	-2.905	-1.926	1.00	0.00

НЕТАТМ О	107	024	KWH	6	-4.287	-0.525	-2.020	1.00	0.00
HETATM O	108	022	KWH	6	-6.572	-3.730	-2.249	1.00	0.00
НЕТАТМ Н	109	9H24	KWH	6	-5.600	-5.335	-1.398	1.00	0.00
HETATM O	110	025	KWH	6	-6.354	-2.473	-0.394	1.00	0.00
НЕТАТМ Н	111	3H25	KWH	6	-5.593	-4.079	0.610	1.00	0.00
НЕТАТМ С	112	C28	KWH	6	-7.282	-2.883	-1.372	1.00	0.00
НЕТАТМ С	113	C25	KWH	6	-7.825	-1.664	-2.119	1.00	0.00
НЕТАТМ Н	114	3H26	KWH	6	-8.475	-1.964	-2.940	1.00	0.00
НЕТАТМ Н	115	4H26	KWH	6	-7.015	-1.068	-2.530	1.00	0.00
НЕТАТМ Н	116	5H26	KWH	6	-8.399	-1.021	-1.451	1.00	0.00
НЕТАТМ С	117	C2	KWH	6	-8.406	-3.683	-0.704	1.00	0.00
НЕТАТМ Н	118	6H26	KWH	6	-9.122	-4.041	-1.444	1.00	0.00
НЕТАТМ Н	119	7H26	KWH	6	-8.945	-3.072	0.019	1.00	0.00
НЕТАТМ Н	120	8H26	KWH	6	-8.010	-4.552	-0.178	1.00	0.00

Co-ordinates of compound 2

REMARK	Aco	celry	s Dis	covery S	tudio PDB	file			
REMARK	Cre	eated	: 20	14-11-10	T15:34:09Z				
HETATM N	1	N21	KWH	1	0.604	-5.308	1.731	1.00	0.00
НЕТАТМ Н	2	6H34	KWH	1	0.704	-5.148	0.746	1.00	0.00
HETATM N	3	N22	KWH	1	-0.350	-0.680	-1.448	1.00	0.00
HETATM N	4	N1	KWH	1	-0.710	0.180	-2.438	1.00	0.00
HETATM	5	N28	KWH	1	0.539	-1.439	-2.158	1.00	0.00
HETATM	6	C24	KWH	1	0.754	-1.048	-3.438	1.00	0.00
HETATM	7	C34	KWH	1	-0.084	0.053	-3.619	1.00	0.00
HETATM	8	C25	KWH	1	1.209	-2.609	-1.555	1.00	0.00
HETATM N	9	N18	KWH	1	3.190	-4.121	-0.039	1.00	0.00
HETATM	10	C21	KWH	1	3.543	-2.931	-0.556	1.00	0.00
HETATM	11	024	KWH	1	4.419	-2.207	-0.095	1.00	0.00
HETATM C	12	C22	KWH	1	3.759	-4.599	1.214	1.00	0.00
HETATM H	13	Н57	KWH	1	2.556	-4.644	-0.606	1.00	0.00
HETATM C	14	C1	KWH	1	2.996	-5.823	1.747	1.00	0.00
HETATM H	15	Н66	KWH	1	4.797	-4.856	0.995	1.00	0.00
HETATM H	16	Н67	KWH	1	3.761	-3.777	1.934	1.00	0.00
HETATM C	17	C27	KWH	1	1.709	-5.477	2.512	1.00	0.00
HETATM H	18	H71	KWH	1	2.770	-6.538	0.961	1.00	0.00
HETATM H	19	H72	KWH	1	3.638	-6.350	2.453	1.00	0.00
HETATM O	20	030	KWH	1	1.715	-5.444	3.739	1.00	0.00
HETATM C	21	C2	KWH	1	2.734	-2.571	-1.809	1.00	0.00
HETATM O	22	028	KWH	1	2.998	-3.536	-2.818	1.00	0.00
НЕТАТМ Н	23	0H34	KWH	1	3.076	-1.590	-2.138	1.00	0.00
НЕТАТМ С	24	C31	KWH	1	1.820	-4.124	-3.327	1.00	0.00

НЕТАТМ С	25	C32	KWH	1	0.751	-3.861	-2.289	1.00	0.00
НЕТАТМ Н	26	7H35	KWH	1	0.943	-2.661	-0.497	1.00	0.00
HETATM	27	H13	KWH	1	1.419	-1.464	-4.181	1.00	0.00
H HETATM O	28	032	KWH	1	1.944	-5.523	-3.360	1.00	0.00
HETATM H	29	7H41	KWH	1	1.580	-3.726	-4.313	1.00	0.00
HETATM O	30	035	KWH	1	0.807	-5.016	-1.484	1.00	0.00
HETATM	31	1H42	KWH	1	-0.243	-3.775	-2.731	1.00	0.00
HETATM C	32	C38	KWH	1	1.170	-6.088	-2.329	1.00	0.00
HETATM C	33	C35	KWH	1	2.015	-7.109	-1.572	1.00	0.00
НЕТАТМ Н	34	3H43	KWH	1	2.268	-7.953	-2.213	1.00	0.00
HETATM	35	4H43	KWH	1	1.488	-7.500	-0.703	1.00	0.00
HETATM H	36	5H43	KWH	1	2.951	-6.663	-1.241	1.00	0.00
HETATM C	37	C3	KWH	1	-0.082	-6.718	-2.941	1.00	0.00
НЕТАТМ Н	38	6H43	KWH	1	0.180	-7.554	-3.589	1.00	0.00
НЕТАТМ Н	39	7H43	KWH	1	-0.622	-5.996	-3.548	1.00	0.00
HETATM H	40	8H43	KWH	1	-0.759	-7.086	-2.172	1.00	0.00
HETATM C	41	C1	KWH	3	-0.198	0.879	-4.869	1.00	0.00
HETATM C	42	C4	KWH	3	-1.567	1.484	-5.167	1.00	0.00
НЕТАТМ С	43	C7	KWH	3	-1.324	1.835	-6.633	1.00	0.00
НЕТАТМ Н	44	Н9	KWH	3	-2.202	2.025	-7.248	1.00	0.00
НЕТАТМ С	45	C10	KWH	3	-0.473	0.681	-7.144	1.00	0.00
HETATM O	46	013	KWH	3	0.023	0.039	-5.984	1.00	0.00
HETATM N	47	N13	KWH	3	-2.602	0.458	-5.052	1.00	0.00
НЕТАТМ Н	48	4H24	KWH	3	-1.837	2.335	-4.541	1.00	0.00
НЕТАТМ Н	49	3H25	KWH	3	-2.399	-0.409	-4.592	1.00	0.00
НЕТАТМ О	50	024	KWH	3	0.585	1.278	-7.847	1.00	0.00
НЕТАТМ Н	51	0H86	KWH	3	-1.021	-0.024	-7.770	1.00	0.00

НЕТАТМ С	52	C27	KWH	3	0.567	2.672	-7.637	1.00	0.00
HETATM O	53	030	KWH	3	-0.456	2.938	-6.704	1.00	0.00
HETATM C	54	C2	KWH	3	0.245	3.379	-8.956	1.00	0.00
HETATM H	55	9H88	KWH	3	0.208	4.461	-8.826	1.00	0.00
НЕТАТМ Н	56	0Н89	KWH	3	-0.723	3.051	-9.335	1.00	0.00
НЕТАТМ Н	57	1H89	KWH	3	0.997	3.156	-9.713	1.00	0.00
НЕТАТМ С	58	C30	KWH	3	1.913	3.113	-7.061	1.00	0.00
НЕТАТМ Н	59	2H89	KWH	3	1.906	4.175	-6.815	1.00	0.00
НЕТАТМ Н	60	3H89	KWH	3	2.721	2.937	-7.771	1.00	0.00
HETATM H	61	4H89	KWH	3	2.145	2.561	-6.152	1.00	0.00
HETATM N	62	N32	KWH	3	-5.749	-2.103	-4.005	1.00	0.00
HETATM C	63	C35	KWH	3	-6.070	-2.514	-2.773	1.00	0.00
HETATM	64	038	KWH	3	-6.603	-1.801	-1.932	1.00	0.00
HETATM H	65	9Н55	KWH	3	0.570	1.652	-4.832	1.00	0.00
HETATM C	66	C28	KWH	3	-5.497	-0.692	-4.257	1.00	0.00
HETATM C	67	C31	KWH	3	-4.715	-0.563	-5.567	1.00	0.00
HETATM H	68	Н85	KWH	3	-6.457	-0.174	-4.292	1.00	0.00
HETATM H	69	H86	KWH	3	-4.928	-0.309	-3.405	1.00	0.00
HETATM C	70	C34	KWH	3	-3.827	0.679	-5.576	1.00	0.00
HETATM H	71	Н90	KWH	3	-4.066	-1.420	-5.725	1.00	0.00
НЕТАТМ Н	72	H91	KWH	3	-5.395	-0.520	-6.417	1.00	0.00
HETATM O	73	037	KWH	3	-4.211	1.733	-6.060	1.00	0.00
HETATM H	74	H16	KWH	3	-5.424	-2.826	-4.613	1.00	0.00
HETATM C	75	C1	KWH	5	-0.660	-5.913	2.175	1.00	0.00
HETATM C	76	C4	KWH	5	-1.637	-6.177	1.024	1.00	0.00
HETATM H	77	Н9	KWH	5	-1.070	-5.289	2.970	1.00	0.00
HETATM O	78	07	KWH	5	-1.034	-7.245	0.334	1.00	0.00

НЕТАТМ Н	79	9Н56	KWH	5	-2.591	-6.515	1.433	1.00	0.00
НЕТАТМ С	80	C10	KWH	5	-0.562	-8.164	1.302	1.00	0.00
НЕТАТМ С	81	C13	KWH	5	-0.465	-7.371	2.603	1.00	0.00
НЕТАТМ Н	82	0H58	KWH	5	0.435	-7.597	3.174	1.00	0.00
HETATM O	83	012	KWH	5	-1.527	-9.159	1.538	1.00	0.00
HETATM H	84	6H75	KWH	5	0.385	-8.603	0.988	1.00	0.00
HETATM C	85	C15	KWH	5	-2.052	-9.028	2.842	1.00	0.00
HETATM O	86	018	KWH	5	-1.591	-7.789	3.335	1.00	0.00
HETATM C	87	C2	KWH	5	-1.523	-10.163	3.723	1.00	0.00
HETATM H	88	1H77	KWH	5	-1.874	-10.057	4.749	1.00	0.00
HETATM H	89	2H77	KWH	5	-0.434	-10.159	3.739	1.00	0.00
HETATM H	90	3H77	KWH	5	-1.849	-11.133	3.347	1.00	0.00
HETATM C	91	C18	KWH	5	-3.580	-9.017	2.780	1.00	0.00
HETATM	92	4H77	KWH	5	-4.009	-8.874	3.772	1.00	0.00
HETATM H	93	5H77	KWH	5	-3.963	-9.952	2.373	1.00	0.00
HETATM H	94	6H77	KWH	5	-3.935	-8.207	2.145	1.00	0.00
HETATM C	95	C1	KWH	6	-1.978	-5.058	0.076	1.00	0.00
HETATM N	96	N4	KWH	6	-1.557	-3.783	0.048	1.00	0.00
HETATM N	97	N7	KWH	6	-2.076	-2.980	-0.918	1.00	0.00
HETATM N	98	N10	KWH	6	-2.882	-3.896	-1.537	1.00	0.00
HETATM C	99	C13	KWH	6	-2.862	-5.143	-1.006	1.00	0.00
HETATM H	100	H15	KWH	6	-3.404	-6.019	-1.329	1.00	0.00
HETATM C	101	C8	KWH	6	-3.721	-3.518	-2.694	1.00	0.00
HETATM C	102	C11	KWH	6	-5.227	-3.741	-2.405	1.00	0.00
HETATM O	103	014	KWH	6	-5.657	-4.825	-3.216	1.00	0.00
HETATM H	104	5H38	KWH	6	-5.416	-3.969	-1.356	1.00	0.00
НЕТАТМ С	105	C17	KWH	6	-3.448	-4.410	-3.901	1.00	0.00

НЕТАТМ Н	106	0НЗ9	KWH	6	-3.485	-2.480	-2.935	1.00	0.00
НЕТАТМ С	107	C20	KWH	6	-4.606	-5.389	-3.970	1.00	0.00
HETATM O	108	018	KWH	6	-4.971	-5.441	-5.330	1.00	0.00
HETATM H	109	9H43	KWH	6	-4.348	-6.378	-3.589	1.00	0.00
HETATM O	110	021	KWH	6	-3.552	-3.701	-5.112	1.00	0.00
HETATM H	111	3H44	KWH	6	-2.485	-4.914	-3.864	1.00	0.00
HETATM C	112	C24	KWH	6	-4.168	-4.543	-6.060	1.00	0.00
HETATM C	113	C21	KWH	6	-3.098	-5.323	-6.828	1.00	0.00
HETATM H	114	3H45	KWH	6	-2.443	-4.648	-7.378	1.00	0.00
HETATM H	115	4H45	KWH	6	-3.555	-6.005	-7.546	1.00	0.00
HETATM H	116	5H45	KWH	6	-2.482	-5.915	-6.150	1.00	0.00
HETATM C	117	C2	KWH	6	-5.049	-3.724	-7.004	1.00	0.00
HETATM H	118	1H46	KWH	6	-4.465	-2.965	-7.524	1.00	0.00
HETATM H	119	2H46	KWH	6	-5.854	-3.225	-6.467	1.00	0.00
HETATM H	120	3H46	KWH	6	-5.514	-4.364	-7.754	1.00	0.00