Electronic Supplementary Information

Monte Carlo study of the micelles constructed by ABCA tetrablock copolymers

and their formation in A-selective solvents

Jiani Ma,^{ab} Jie Cui,^b Yuanyuan Han,^{*b} Wei Jiang^b and Yingchun Sun^{*a}

^aNortheast Normal University, School of Physics, Changchun 130024, P. R. China

^bState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

Table of contents:

S1. Illustration showing the distribution of solvophilic blocks A in the micelles and density variations of segments A, B, C and solvent with R (R is the radii around the mass center of the vesicle).

S2. Different initial states used in this paper, and additional simulation results obtained from different initial states.

S3. Simulation results of the ABCA tetrablock copolymer systems with other chain length ratios of blocks B to C.

S4. The formation pathway of the Janus lamella in Figure 8a in the manuscript.

*Corresponding authors: E-mail: yyhan@ciac.ac.cn; sunyc149@nenu.edu.cn. Telephone: +86-431-85262642. Fax: +86-431-85262126. S1. Illustration showing the distribution of solvophilic blocks A in the micelles and density variations of segments A, B, C and solvent with R (R is the radii around the mass center of the vesicle).

Figure S1. One of the spherical micelles (a) and vesicle (b) formed by $A_2B_6C_6A_2$ tetrablock copolymers with $\varepsilon_{CS} = 2.0$, r = 0.25 and $\varepsilon_{CS} = 3.5$, r = 1.0. (a') and (b') are the cross-sections of (a) and (b). The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are drawn in light gray. (c) is the density variations of segments A, B, C, and solvent with *R* (*R* is the radii around the mass center of the vesicle) of the vesicle shown in (b).

S2. Different initial states used in this paper, and additional simulation results obtained from different initial states.

Figure S2. Different initial states (the athermal state of $T = \infty$). (a) Initial state for the micelles shown in Figures 1, 4 and 5 in the manuscript; (b) Initial state for the

micelles shown in Figures S3, S5 and S7; (c) Initial state for the micelles shown in Figures S4, S6 and S8. The blocks A, B and C are drawn in light gray, green and blue, respectively.

Figure S3. Morphological phase diagram of $A_2B_6C_6A_2$ tetrablock copolymers as a function of ε_{CS} and r from initial state 2. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

Figure S4. Morphological phase diagram of $A_2B_6C_6A_2$ tetrablock copolymers as a

function of ε_{CS} and r from **initial state 3**. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

Figure S5. Morphological phase diagram of $A_2B_7C_5A_2$ tetrablock copolymers as a function of ε_{CS} and *r* from **initial state 2**. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

Figure S6. Morphological phase diagram of $A_2B_7C_5A_2$ tetrablock copolymers as a function of ε_{CS} and r from initial state 3. The insoluble blocks B and C are drawn in

green and blue, and the soluble blocks A are not shown in the images.

Figure S7. Morphological phase diagram of $A_2B_8C_4A_2$ tetrablock copolymers as a function of ε_{CS} and *r* from **initial state 2**. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

Figure S8. Morphological phase diagram of $A_2B_8C_4A_2$ tetrablock copolymers as a function of ε_{CS} and r from initial state 3. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

S3. Simulation results of the ABCA tetrablock copolymer systems with other chain length ratios of blocks B to C.

Figure S9. Morphological phase diagram of $A_2B_4C_8A_2$ tetrablock copolymers as a function of ε_{CS} and r. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

Figure S10. Morphological phase diagram of $A_2B_5C_7A_2$ tetrablock copolymers as a function of ε_{CS} and *r*. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

Figure S11. Morphological phase diagram of $A_2B_2C_{10}A_2$ tetrablock copolymers as a function of ε_{CS} and r. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

Figure S12. Morphological phase diagram of $A_2B_{10}C_2A_2$ tetrablock copolymers as a function of ε_{CS} and r. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.

S4. The formation pathway of the Janus lamella in Figure 8a in the manuscript.

Figure S13. Morphological pathway (a)-(h) for Janus lamella formed by $A_2B_8C_4A_2$ tetrablock copolymers with $\varepsilon_{CS} = 3.5$ and r = 0.55 (Figure 8a in the manuscript). For clarity, the cross-section of the vesicle is given in (b') and (c'). The pores in the vesicles are marked by black arrows. The insoluble blocks B and C are drawn in green and blue, and the soluble blocks A are not shown in the images.