Dimeric Resorcinarene Salt Capsules with Very Tight Encapsulation of Anions and Guest Molecules

Fangfang Pan, Ngong Kodiah Beyeh* and Kari Rissanen*

Department of Chemistry, NanoScience Center, University of Jyvaskyla, P.O. Box 35, 40014

Jyvaskyla, Finland. Fax: +358 14 260 2651; Tel: +358 14 260 2672

e-mail: kari.t.rissanen@jyu.fi, ngong.k.beyeh@jyu.fi

Supporting Information

Table of Contents

I General Information	2
II Syntheses	2
III X-Ray Crystallography	4
IV References	7

I General Information

All materials were commercial and used as such unless otherwise mentioned. The *N*-cyclohexyl ammonium resorcinarene salt $4(OTf)_4$ was synthesized according to reported procedures.^{1,2, 1}H and ¹³C NMR spectra were recorded on a Bruker Avance DRX 400 (400 MHz for ¹H and 100 MHz for ¹³C) and Bruker Avance DRX 500 (500 MHz for ¹H and 126 MHz for ¹³C) spectrometers. All signals are given as δ values in ppm using residual solvent signals as the internal standard. Coupling constants are given in Hz. Melting points were determined with a Mettler Toledo FP62 capillary melting point apparatus. The mass spectrometric measurements were done on micromass LCT ESI-TOF instrument.

II Syntheses

N- Cyclohexyl ammonium resorcinarene triflate 4(OTf)₄:

A solution of the *N*-cyclohexyl tetrabenzoxaxine (1.0 g, 0.964 mmol), conc. trifluoromethanesulfonic acid (3 ml) and H₂O (4 ml) in isopropanol (40 ml) was heated under reflux for four hours. Water and formaldehyde were removed by azeotropic distillation with chloroform. The remaining isopropanol was removed by evaporation and the crude product dissolved in CH₂Cl₂. The remaining acid was then removed by extraction with water. The solvent was removed and the product triturated with diethyl ether, filtered and dried in vacuum (1.37 g 89 %). Mp > 213 °C. [C₆₄H₈₈N₄O₂₀F₁₂S₄, MW 1589.63 g/mol; HRMS (ESI): m/z calcd for C₆₀H₈₆N₄O₈: 495.3217 [**4**-2H]²⁺; found: 495.3231, 2.8 ppm]; ¹H NMR (400 MHz, DMSO-d₆, 300 K) δ : 9.09 (br, 8H, Ar-OH), 8.08 (br, 8H, NH₂), 7.56 (s, 4H, Ph-H), 4.54 (q, J 6.8 Hz 4H, CH), 4.00 (br, 8H, Ar-CH₂-N), 2.94 (m, 4H, N-CH), 2.03-1.06 (m, 52H, CH₂, CH₃); ¹³C NMR (100 MHz, 300 K, DMSO-d₆) δ : 150.7, 126.9, 108.7, 57.4, 55.6, 28.9, 25.9, 25.1, 24.4, 20.6.

Figure S1. ¹H and ¹³C NMR of 4(OTf)₄.

III X-Ray Crystallography:

Single crystal X-ray data for $(2 \times 1,4$ -dioxane $(2 \times H_2O)_2 @(4(OTf)_4)_2$ were collected at 173(2) K using an Agilent Super-Nova diffractometer with a mirror-monochromatized Mo- $K\alpha$ ($\lambda = 0.71073$ Å) radiation, while data collection for (OTf•MeOH)2@(4(OTf)3MeOH)2 was performed at 123(2) K with Agilent Super-Nova dual wavelength diffractometer with a micro-focus X-ray source and multilayer optics monochromatized Cu-Ka ($\lambda = 1.54184$ Å) radiation. Program CrysAlisPro³ was used for the data collection and reduction. The intensities were corrected for absorption using analytical face index absorption correction method⁴ for $(2 \times 1,4$ -dioxane $\cdot 2 \times H_2O_2(a/(4OTf)_4)_2)$, and gaussian face index absorption correction method³ for (OTf•MeOH)₂@(4(OTf)₃MeOH)₂. The structures were solved with direct methods (SHELXS⁵) and refined by full-matrix least squares on F^2 using the OLEX2⁶, which utilizes the SHELXL-2013 module⁵. Anisotropic displacement parameters were assigned to non-H atoms. All the hydrogen atoms were refined using riding models with $U_{eq}(H)$ of $1.5U_{eq}(parent)$ for hydroxyl and terminal methyl groups, and 1.2 U_{eq} (parent) for other groups. One of the four triflates and one of the four cyclohexyl groups in $(2 \times 1, 4$ -dioxane• $2 \times H_2O)_2(a)(4(OTf)_4)_2$, and two of the triflates and two of the cyclohexyl groups in (OTf•MeOH)₂@(4(OTf)₃MeOH)₂, were found to be disordered. They were split over two positions according to the difference Fourier maps. Anisotropic displacement parameters and geometry of the disordered groups were constrained or restrained if necessary. Crystal of (OTf•MeOH)₂@(4(OTf)₃MeOH)₂ is twinning. The hklf5 format reflections file with two components was generated by PLATON⁷. The final refined BASF factor was 0.399.

Crystal data:

(OTf•MeOH)₂@(4(OTf)₃MeOH)₂: $0.08 \times 0.26 \times 0.37$ mm, $C_{60}H_{88}N_4O_8 \cdot 4(CF_3O_3S)$ 2(CH₄O), M = 1653.70, monoclinic, space group $P2_1/n$, a = 15.4805(7) Å, b = 31.8766(7) Å, c = 15.9510(5) Å, $a = 90^\circ$, $\beta = 104.209(4)^\circ$, $\gamma = 90^\circ$, V = 7630.5(5) Å³, Z = 4, $\rho = 1.440$ g cm⁻³, $\mu = 2.057$ mm⁻¹, F(000) = 3472, 49353 reflections ($\theta_{max} = 76.74^\circ$) measured (13487 unique, $R_{int} = 0.043$, completeness = 99.8%), Final *R* indices ($I > 2\sigma(I)$): $R_I = 0.0891$, $wR_2 = 0.2802$, *R* indices (all data): $R_I = 0.0991$, $wR_2 = 0.2872$. *GOF* = 1.097 for 1168 parameters and 79 restraints, largest diff. peak and hole 0.776/-0.664 eÅ⁻³. CCDC-xxxxxx contains the supplementary data for this structure.

 $(2 \times 1, 4 - \text{dioxane} \cdot 2 \times H_2 O)_2 @(4(OTf)_4)_2: 0.09 \times 0.25 \times 0.37 \text{ mm}, C_{60} H_{88} N_4 O_8 \cdot 4(CF_3 O_3 S) 2(C_4 H_8 O_2)$ 2(H₂O), M = 1801.86, triclinic, space group P-1, a = 16.3576(14) Å, b = 17.0042(13) Å, c = 16.3576(14) Å, b = 16.3576(14) Å, b = 17.0042(13) Å, c = 16.3576(14) Å, b = 16 18.5089(13) Å, $\alpha = 69.135(7)^{\circ}$, $\beta = 67.660(7)^{\circ}$, $\gamma = 67.136(8)^{\circ}$, V = 4254.4(7) Å³, Z = 2, $\rho = 1.407$ g cm⁻³, $\mu = 0.215$ mm⁻¹, F(000) = 1896, 39947 reflections ($\theta_{max} = 25.250^{\circ}$) measured (15415 unique, $R_{int} = 0.0501$, completeness = 99.9%), Final *R* indices ($I > 2\sigma(I)$): $R_I = 0.0670$, $wR_2 = 0.1636$, *R* indices (all data): $R_I = 0.1169$, $wR_2 = 0.1988$. *GOF* = 1.032 for 1197 parameters and 60 restraints, largest diff. peak and hole 0.554/-0.365 eÅ⁻³. CCDC-xxxxx contains the supplementary data for this structure.

Figure S3. Intermolecular bridging effect of triflates in the assembly of $(OTf \cdot MeOH)_2@(4(OTf)_3MeOH)_2$ with the relevant resorcinarene cation in black. The blue dotted lines highlight the OH…O interactions directly between two resorcinarene frames. The bound guests are omitted for clarity.

Figure S4. Intermolecular bridging effect of triflates in the assembly of $(2 \times 1,4$ -dioxane• $2 \times H_2O)_2$ @(4(OTf)₄)₂ with the relevant resorcinarene cation in black. The bound guests are omitted for clarity.

IV References:

- 1 Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetrahedron 1996, 52, 2663-2704
- (a) Schmidt, C.; Airola, K.; Böhmer, V.; Vogt, W.; Rissanen, K. *Tetrahedron* 1997, 53, 17691–17698; (b) Airola, K.; Böhmer, V.; Paulus, E. F.; Rissanen, K.; Schmidt, C.; Thondorf, I.; Vogt, W. *Tetrahedron* 1997, 53, 10709–10724; (c) Shivanyuk, A.; Spaniol, T. P.; Rissanen, K.; Kolehmainen, E.; Böhmer, V. *Angew. Chem. Int. Ed.* 2000, 39, 3497–3500; (d) Beyeh, N. K.; Cetina, M.; Löfman, M.; Luostarinen, M.; Shivanyuk, A.; Rissanen, K. *Supramol. Chem.* 2010, 22, 737–750; (e) Beyeh, N. K.; Cetina, M.; Rissanen, K. *Cryst. Growth Des.* 2012, 12, 4919–4926.
- 3 *CrysAlisPro* 2012, Agilent Technologies. Version 1.171.36.31.
- 4 Clark, R. C.; Reid, J. S. Acta Cryst. 1995, A51, 887.
- 5 Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.
- 6 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K. and Puschmann H., *J. Appl. Cryst.* 2009, **42**, 339-341
- 7 Spek, A. L. Acta Cryst. 2009, D65, 148-155.