Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information Deuterated Hydrazino-s-triazine as highly-efficient labeling reagent for N-Glycans Relative Quantification Analysis by using Electrospray Ionization Mass Spectrometry

Ming-Zhe Zhao,^a Cai Tie,^b Yi-Wei Zhang,^a Yan Deng,^a Fang-Ting Zhang,^a Ying-Lin Zhou,^{a*} Xin-Xiang Zhang^{a*}

a. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Biochemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry, Peking University, Beijing, 100871, China.

b. State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of MateriaMedica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China

* Corresponding author.

*E-mail: zhouyl@pku.edu.cn. Phone: +86-10-62754112. Fax:+86-10-62754112.

*E-mail: zxx@pku.edu.cn. Phone: 86-10-62754680. Fax: 86-10-62754680.

Contents

• Experimental Section

Synthesis of labelling reagents

General

Materials

Synthesis details

• Tables and Figures

• References

Experimental Section

Synthesis of labelling reagents.

General

¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE III 500 NMR spectrometer at 500 and 125 MHz, respectively. Chemical shifts (δ) were reported in ppm and respectively referenced to internal standard tetramethylsilane (TMS) and solvent signals (TMS, 0 ppm for ¹H NMR and CDCl₃, 77.0 ppm for ¹³C NMR). HRMS data were recorded on Thermo Q-Exactive mass spectrometer. Silica gel (200-300 mesh) was used for flash column chromatography, eluting with ethyl acetate/ petroleum ether mixture.

Materials

Cyanuric chloride (98%) was purchased from Alfa Aesar. Diisopropylethylamine (99%) was purchased from J&K Chemicals. Diethylamine (A. R.), hydrochloric acid (A. R.), hydrazine hydrate (85%, A. R.), petroleum ethe r(bp: 60~90 °C, A. R.), ethyl acetate (A. R.), tetrahydrofuran (A. R.), dichloromethane (A. R.), sodium chloride (A. R.), potassium hydroxide (A. R.) and sodium sulfate anhydrous (A. R.) were all purchased from Beijing Tong Guang Fine Chemicals Company. D₁₁-diethyamine (isotopic purity 99.6%) was purchased from CDN isotopes (Quebec, Canada). Synthesis of 2-hydrazino-4,6-bis-(diethylamino)-s-triazine (denoted as HDEAT)¹

Diisopropylethylamine (5.16 mL, 29.81 mmol) and diethylamine (3.07 mL, 29.81 mmol) in dichloromethane (10 mL) was added dropwise to a suspension of cyanuric chloride (2.5 g, 13.55 mmol) in dichloromethane (50 mL) under ice-cooling for 1 h. The reaction mixture was stirred for 24 h and slowly returned to room temperature. Then, it was washed with 2 mol/L HCl and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to afford crude product, which was chromatographed on silica gel with petroleum ether-ethyl acetate (20:1) to obtain pure intermediate. 85% hydrazine hydrate (4 mL) was added dropwise to intermediate solution in THF (50 mL). The reaction mixture was heated to reflux overnight. After cooling, KOH (2.1 g) in H₂O (20 mL) was added and stirred for 15 min. Then, it was extracted with dichloromethane. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to afford a crude product, which was recrystallized from a mixture of petroleum ether and diethyl ether to give pure product. ¹H NMR (500 MHz, CDCl₃) δ: 5.88 (s, 1H), 3.91 (s, 2H), 3.54 (q, J=7.0 Hz, 8H), 1.14 (t, J=7.0 Hz, 12H). ¹³C NMR (125 MHz, CDCl3) δ: 169.0, 164.5, 41.0, 13.4. HRMS-ESI calcd for [M+H]⁺ 254.2088; found: 254.2081

Synthesis of 2-hydrazino-4,6-bis-(d₁₀-diethylamino)-s-triazine (denoted as d₂₀-HDEAT)

The synthetic route of d₂₀-HDEAT was the same as HDEAT except the replacement of diethylamine by d₁₁-diethylamine. ¹H NMR (500 MHz, CDCl₃) δ 5.77 (s, 1H), 3.91 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.96, 164.51, 40.14, 12.33. HRMS-ESI calcd for [M+H]⁺ 274.3343; found: 274.3341

Tables and Figures

	Peak Area			
	of Peak area of			Glycan
	HDEAT	d ₂₀ -HDEAT	Glycan	Abundance Ratio
	Labelled	labelled	Abundance	(Corrected by
Glycan Compositions	Glycans	Glycans	Ratio	Internal Standard)
Hex ₇ (internal standard)	3.98E+06	3.68E+06	1.08	1.00
Hex ₃ HexNac ₃	1.18E+06	1.06E+06	1.11	1.03
Hex ₃ HexNac ₄	1.80E+06	1.69E+06	1.07	0.99
Hex ₃ HexNac ₅	7.98E+06	7.86E+06	1.02	0.94
Hex ₃ HexNac ₃ Fuc ₁	8.88E+06	8.10E+06	1.10	1.01
Hex ₃ HexNac ₄ Fuc ₁	1.37E+08	1.27E+08	1.08	1.00
Hex ₃ HexNac ₅ Fuc ₁	3.72E+07	3.22E+07	1.16	1.07
Hex ₄ HexNac ₂	6.75E+05	6.71E+05	1.01	0.93
Hex ₄ HexNac ₃	2.48E+06	2.30E+06	1.08	1.00
Hex ₄ HexNac ₄	1.68E+07	1.54E+07	1.09	1.01
Hex ₄ HexNac ₅	9.35E+06	9.32E+06	1.00	0.93
Hex ₄ HexNac ₃ Fuc ₁	1.77E+06	1.58E+06	1.12	1.04
Hex ₄ HexNac ₄ Fuc ₁	3.02E+08	2.65E+08	1.14	1.05
Hex ₄ HexNac ₅ Fuc ₁	7.68E+07	6.60E+07	1.16	1.08
Hex ₄ HexNac ₃ NeuAc ₁	5.98E+05	5.52E+05	1.08	1.00
Hex ₄ HexNac ₄ NeuAc ₁	1.44E+06	1.31E+06	1.10	1.02
Hex ₄ HexNac ₅ NeuAc ₁	2.94E+05	2.85E+05	1.03	0.95
$Hex_4HexNac_3Fuc_1NeuAc_1$	1.68E+05	1.60E+05	1.05	0.97
Hex ₅ HexNac ₂	6.20E+07	5.33E+07	1.16	1.08
Hex ₅ HexNac ₃	4.34E+06	4.36E+06	1.00	0.92
Hex ₅ HexNac ₄	2.22E+07	2.04E+07	1.09	1.01
Hex ₅ HexNac ₅	4.79E+06	4.10E+06	1.17	1.08
Hex ₅ HexNac ₃ Fuc ₁	2.98E+06	2.61E+06	1.14	1.06
$Hex_5HexNac_4Fuc_1$	2.09E+08	1.89E+08	1.11	1.03
Hex ₅ HexNac ₄ Fuc ₂	1.21E+07	1.16E+07	1.04	0.96
$Hex_5HexNac_5Fuc_1$	3.07E+07	2.65E+07	1.16	1.07
Hex ₅ HexNac ₅ Fuc ₂	2.47E+06	2.39E+06	1.03	0.96
$Hex_5HexNac_6Fuc_1$	5.11E+04	4.79E+04	1.07	0.99
$Hex_5HexNac_3NeuAc_1$	5.25E+05	5.01E+05	1.05	0.97
$Hex_5HexNac_4NeuAc_1$	1.28E+07	1.14E+07	1.12	1.04
$Hex_5HexNac_5NeuAc_1$	1.07E+06	1.01E+06	1.06	0.98
$Hex_5HexNac_4Fuc_1NeuAc_1$	1.84E+06	1.73E+06	1.06	0.99
Hex ₅ HexNac ₅ Fuc ₁ NeuAc ₁	6.74E+05	6.54E+05	1.03	0.95
Hex ₆ HexNac ₂	4.61E+07	4.43E+07	1.04	0.96

Table S1 The intergrated peak areas of HDEAT and d_{20} -HDEAT labelled glycans from human serum and glycan abundance ratios.

Hex ₆ HexNac ₃	3.73E+06	3.60E+06	1.04	0.96
Hex ₆ HexNac ₅	5.05E+05	4.62E+05	1.09	1.01
Hex ₆ HexNac ₃ Fuc ₁	8.75E+05	8.48E+05	1.03	0.96
Hex ₆ HexNac ₃ Fuc ₂	3.65E+05	3.41E+05	1.07	0.99
Hex ₆ HexNac ₄ Fuc ₁	7.83E+05	7.14E+05	1.10	1.01
Hex ₆ HexNac ₅ Fuc ₁	7.88E+05	7.72E+05	1.02	0.95
Hex ₆ HexNac ₆ Fuc ₁	9.26E+04	8.88E+04	1.04	0.97
Hex ₆ HexNac ₃ NeuAc ₁	3.80E+05	3.62E+05	1.05	0.97
Hex ₆ HexNac ₄ NeuAc ₁	5.07E+04	4.93E+04	1.03	0.95
Hex ₆ HexNac ₅ NeuAc ₁	1.70E+05	1.58E+05	1.08	1.00
Hex7HexNac2	5.48E+06	4.93E+06	1.11	1.03
Hex ₇ HexNac ₃ Fuc ₁	7.97E+05	7.32E+05	1.09	1.01
Hex ₈ HexNac ₂	2.81E+06	2.77E+06	1.01	0.94
Hex ₉ HexNac ₂	2.10E+06	1.99E+06	1.06	0.98
Hex ₁₀ HexNac ₂	9.52E+04	8.46E+04	1.12	1.04

Table S2 The exact mass of the typical glycans presented in the research and their theoretical m/z of corresponding derivatives

Glycan Compositions	Exact Mass	Theoritical m/z	Theoritical m/z	
		after HDEAT	after d ₂₀ -HDEAT	Origins
		lablled	labelled	
maltoheptaose	1152.3803	1387.5803	1407.5803	Standard
				Glycan
Hex ₄ HexNAc ₂	1072.3806	1307.5806	1327.5806	Ovalbumin
Hex ₃ HexNAc ₃	1113.4072	1348.6072	1368.6072	Ovalbumin
Hex ₅ HexNAc ₂	1234.4334	1469.6334	1489.6334	Ovalbumin
Hex ₄ HexNAc ₃	1275.4600	1510.6600	1530.6600	Ovalbumin
Hex ₆ HexNAc ₂	1396.4863	1631.6863	1651.6863	Ovalbumin,
				Human Serum
Hex ₅ HexNAc ₄	1640.5922	1875.7922	1895.7922	Human Serum
Hex ₅ HexNAc ₄ Fuc ₁	1786.6501	2021.8501	2041.8501	Human Serum
Hex5HexNAc4NeuAc1	1931.6876	2166.8876	2186.8876	Human Serum

Fig. S1b. ¹³C NMR spectrum of HDEAT¹

Fig. S2b. 13 C NMR spectrum of d₂₀-HDEAT

Fig. S3 Calibration curves of relative quantification analysis based on signal ratios of HDEAT and d₂₀-HDEAT labelled N-glycan from OVA in ESI-MS and corresponding concentration ratio: (A) Hex₄HexNAc₂, (B) Hex₃HexNAc₃, (C) Hex₅HexNAc₂, (D) Hex₄HexNAc₃, (E) Hex₆HexNAc₂.

References

1. M.-Z. Zhao, Y.-W. Zhang, F. Yuan, Y. Deng, J.-X. Liu, Y.-L. Zhou and X.-X. Zhang, *Talanta*, 2015, **144**, 992-997.