# **Supporting Information**

# Design, Synthesis and Diversification of Natural

## Product-Inspired Hydantoin-Fused Tetrahydroazepino

### Indoles

Indrajeet J. Barve,<sup>1</sup> Prashant B. Dalvi,<sup>1</sup> Tushar U. Thikekar, <sup>1</sup> Kaushik Chanda,<sup>1</sup> Yu-Li Liu, <sup>3</sup> Chiu-Ping Fang, <sup>3</sup> Chia-Chen Liu, <sup>3</sup> and Chung-Ming Sun<sup>1,2\*</sup>

<sup>1</sup>Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300-10, Taiwan <sup>2</sup>Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1<sup>st</sup> Road, Kaohsiung 807-08, Taiwan <sup>3</sup>Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan

Email: cmsun@mail.nctu.edu.tw

### **Table of contents**

| I. The Role of N-methyl-D-aspartic acid (NMDA) receptor in schizophreniaS3-6  |
|-------------------------------------------------------------------------------|
| II. DAO enzymatic assay                                                       |
| III. The inhibition screening of compounds on porcine kidney DAOS10           |
| IV. The IC50 of compounds on porcine kidney DAOS11                            |
| V. Concentration-inhibition curves                                            |
| VI. The inhibition mechanism of compound <b>5</b> on porcine kidney DAOS12-13 |

| VII. <sup>1</sup> H NMR, <sup>13</sup> C NMR, LRMS, HRMS, IR spectra and HPLCs for compound <b>4</b> , <b>5</b> , |          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|
| 7a-7s                                                                                                             | S14-S146 |  |  |  |  |  |
| VIII. X-ray crystal data for compound <b>5</b>                                                                    | S147-159 |  |  |  |  |  |
| IX. X-ray crystal data for compound <b>7b</b>                                                                     | S160-168 |  |  |  |  |  |
| X. X-ray crystal data for compound <b>7r</b>                                                                      | S169-179 |  |  |  |  |  |

# I The Role of N-methyl-D-aspartic acid (NMDA) receptor in schizophrenia

The aberrant regulatory mechanism of glutamate transmission on N-methyl-D-aspartic acid (NMDA) receptor has been reported as one of the neuropathology in schizophrenia.<sup>1</sup> The receptor is a heterotetramer composed of two structure subunits of NMDA receptor 1 (NR1) and NR2.<sup>2</sup> The extracellular domain of these two subunits were responsible for modulatory and ligand binding functions, where the NR1 binds the co-agonist glycine, and the NR2 binds the neurotransmitter glutamate. The membrane channel domain is responsible for the entrance of calcium ion. The receptor requires the binding of glutamate from NR2 subunit to activate the receptor, and requires the co-agonist of glycine binding for the efficient opening of the ion channel.<sup>3</sup> Modulation the glycine binding site of NMDA receptor may improve cognitive function and negative symptoms in schizophrenia.<sup>4</sup> D-amino acid oxidase (DAO) was found to be involved in the activation process of the NMDA receptor.<sup>5</sup> The substrates of DAO, especially the D-amino acid of D-serine, may bind the glycine site of the NMDA receptor as a co-agonist.<sup>6,7</sup> This in turn may regulate the NMDA receptor in opening its calcium channel. Moreover,

D-serine has also been found to inhibit the  $\alpha$ -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated current in rat hippocampus neurons.<sup>8</sup> Thus, DAO may play role in the pathogenesis of schizophrenia.

D-serine is a full agonist at the allosteric glycine binding site of the NMDA receptor, and was reported to improve negative, cognitive symptoms, and symptoms poorly addressed by the standard D2 antagonist in schizophrenia.<sup>9</sup> Inhibition of DAO became essential to increase D-serine levels in the brain. The DAOI does not seem to be used alone in the treatment of schizophrenia, a meta-analysis evaluating the potential of modulators of the NMDA receptor as adjunctive therapy for schizophrenia in 29 published clinical trials was reported that D-serine, glycine structure analogue of mucolytic agent N-acetyl-cysteine (NAC) and glycine transporter inhibitor sarcosine as adjuncts to non-clozapine antipsychotics may benefit the treatment of negative and total symptoms of chronic schizophrenia.<sup>10</sup> In our ethnic group, the glycine transporter inhibitor sarcosine has been reported with better adjunctive than D-serine for long-term stable schizophrenia and acute schizophrenia<sup>11</sup>, and high dose may be essential for acute schizophrenia.<sup>12</sup> D-alanine may be a better adjunctive.<sup>13</sup> These results suggest indirect NMDA glycine site treatment may be better than direct full agonist, especially in our population.

Sodium benzoate is a bacteriostatic and fungistatic food preservative. It is a safe and easy to obtain DAO inhibitor. It was put in a clinical trial with doses of above 1g and showed beneficial results in the treatment of schizophrenia.<sup>14</sup> Although in the short term up to six weeks of clinical trial, it did not showed toxic effects. However, it has been reported that sodium benzoate under the combination with ascorbic acid (vitamin C) form benzene, known carcinogen may a (http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/C hemicalContaminants/Benzene/ucm055815.htm). The Food Standards Agency (FSA) at United Kingdom even suggested that sodium benzoate combining with certain artificial colors may be linked to hyperactivity behavior

(http://www.myomancy.com/2007/09/food-colorings-and-hyperactivity/). This indicates that DAOI better than sodium benzoate is essential to meet the treatment need.

### **References:**

- (1) Field, J. R.; Walker, A. G.; Conn, P. J. Trends Mol. Med. 2011, 17, 689-98.
- (2) Paoletti, P.; Neyton, J. Curr. Opin. Pharmacol. 2007, 7, 39-47.
- (3) Kleckner, N. W.; Dingledine, R. Science, 1988, 241, 835-7.
- (4) Coyle, J. T.; Tsai, G. Psychopharmacology, 2004, 174, 32-8.
- (5) Schell, M. J. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2004, 359, 943-64.
- (6) Shleper, M.; Kartvelishvily, E.; Wolosker, H. *The Journal of Neuroscience*, **2005**, *25*, 9413-7.
- (7) Mothet, J. P. Proceedings of the National Academy of Sciences of the United States of America, **2000**, 97, 4926-31.
- (8)Gong, X. Q.; Zabek, R. L.; Bai, D. Canadian Journal of *Physiology and Pharmacology*, **2007**, 85, 546-55.
- (9) Ferraris, D. V.; Tsukamoto, T. Curr. Pharm. Des. 2011, 17, 103-11.
- (10) Singh, S. P.; Singh, V. CNS Drugs, 2011, 25, 859-85.
- (11) Lane, H. Y. Arch. Gen. Psychiatry, 2005, 62, 1196-204.
- (12) Lane, H. Y. Biol. Psychiatry, 2008, 63, 9-12.

- (13) Tsai, G. E. Biol. Psychiatry, 2006, 59, 230-4.
- (14) Lane, H. Y. JAMA Psychiatry, 2013, 70, 1267-75.

II. DAO enzymatic assay. Porcine kidney DAO (pkDAO) was used in the DAO enzymatic assay. A purified DAO enzyme was obtained from porcine kidney (Sigma-Aldrich, USA). The DAO enzymatic activity assay was modified as specified by Oguri et al.<sup>1</sup> DAO activity was measured by using substrate D-alanine reaction-produced hydrogen peroxide  $(H_2O_2)$  to further react with 3-(4-hydroxyphenyl) propionic acid (HPPA). HPPA was oxidized by  $H_2O_2$  and peroxidase to become the fluorogenic dimer measured to represent DAO activity. For porcine kidney DAO, the DAO substrate was prepared in 50 mM D-alanine (dissolved in 0.2 M Tris-HCl buffer, pH 8.3). A 100 ul of D-alanine solution was mixed with 4 ul (in 100%) dimethyl sulfoxide, DMSO) of different concentrations of candidate compounds ranging from 12.21 uM, 24.41 uM, 48.83 µM, 97.66 µM, 195.31 µM, 390.63 µM, 0.78 mM, 1.56 mM, 3.13 mM, 6.25 mM, 12.50 mM, and 25.00 mM. Ten microliters of D-alanine and candidate compound mixture was incubated with 220 ul of Reaction Master Mix in black 96 well plate at  $37^{\circ}$ C for 5 min. The

Reaction Master Mix contained 110 ul of 5 U/mL porcine kidney DAO (Sigma-Aldrich, USA) solution (dissolved with 0.2 M Tris–HCl buffer, pH 8.3), 1.1 mL of 15 U/mL peroxidase solution (dissolved with 0.2 M Tris–HCl buffer, pH 8.3), 1.1 mL of 20 mM HPPA solution (dissolved with 0.2 M Tris–HCl buffer, pH 8.3), and 2.2 ml of 2 M Tris–HCl buffer (pH 8.3) for 110 reaction assays.

Fluorescence intensity (Fs) was measured at 405 nm by irradiation excitation at 320 nm. The higher the DAO enzymatic activity was, the higher the fluorescence intensity. The fluorometric inhibition indicator (Fi) was obtained from the following equation:  $F_i = (F_s - F_{Drug})/(F_{DMSO})$ , where the fluorescent drug blank  $(F_{Drug})$  was measured in the drug mixture solution (using 0.2 M Tris HCl buffer, pH 8.3, without *D*-alanine). A DMSO blank (F<sub>DMSO</sub>) was measured under a 100% DMSO solution. Although FAD is generally included in the reaction mixture in the D-amino acid oxidase assay since it easily dissociates from the holoenzyme, the present method was performed without FAD. The inhibitory effect of DAO inhibitors was compared by using inhibitory concentrations leading to 50% inhibition of DAO activity (IC<sub>50</sub>). For inhibitory constant (*Ki*) estimation, seven different final concentrations of

substrate *D*-alanine, ranging from 522.6, 1045.2, 2090.3, 4180.6, 8361.2, 16722.4, and 33444.8  $\mu$ M, were incubated with 3 drug concentrations of compound. The IC<sub>50</sub> and inhibitory constant (*Ki*) were calculated by nonlinear regression model using GraphPad Prism, version 5 (GraphPad Software, Inc., La Jolla, CA).<sup>2,3</sup>

In this study, hydantoin fused tetrahydroazepino [4,5-*b*]indoles derivatives were screened for their porcine DAO inhibitory effects. Compound **5** had shown the strongest DAOI effect with IC50 of 4.5  $\pm$  1.04  $\mu$ M. It showed competitive inhibitory effect with the DAO substrate of D-alanine. Further impact of compound **5** effect on the negative and cognitive symptoms of schizophrenia animal analyses is essential to confirm for its role as a novel antipsychotics.

### **References:**

- (1) Oguri, S. Food chemistry, 2007, 100, 616-622.
- (2) Halgren, T. A. Journal of Computational Chemistry, **1996**, 17, 490-519.
- (3) Shleper, M.; Kartvelishvily, E.; Wolosker, H. *The Journal of Neuroscience*, **2005**, *25*, 9413-7.

| Compound | МW       | Screening at final Conc. 20.8 uM |             |  |  |
|----------|----------|----------------------------------|-------------|--|--|
| Compound | 141. 44. | <b>DMSO</b> = 1                  | Na-Benz = 1 |  |  |
| 7a       | 381.42   | 0.89                             | 0.95        |  |  |
| 7b       | 435.85   | 0.91                             | 0.97        |  |  |
| 7c       | 447.5    | 0.72                             | 0.77        |  |  |
| 7d       | 413.49   | 0.76                             | 0.80        |  |  |
| 7e       | 446.41   | 0.63                             | 0.67        |  |  |
| 7f       | 462.47   | 0.68                             | 0.72        |  |  |
| 7g       | 383.46   | 0.76                             | 0.80        |  |  |
| 7h       | 431.5    | 0.84                             | 0.90        |  |  |
| 7i       | 582.55   | 0.65                             | 0.69        |  |  |
| 7j       | 393.43   | 0.62                             | 0.66        |  |  |
| 7k       | 355.41   | 0.88                             | 0.94        |  |  |
| 71       | 409.5    | 0.67                             | 0.71        |  |  |
| 7m       | 431.5    | 0.77                             | 0.81        |  |  |
| 7n       | 417.48   | 0.71                             | 0.75        |  |  |
| 7o       | 407.46   | 0.93                             | 0.98        |  |  |
| 7p       | 431.44   | 0.88                             | 0.93        |  |  |
| 7q       | 383.46   | 0.58                             | 0.61        |  |  |
| 7r       | 445.53   | 0.88                             | 0.95        |  |  |
| 7s       | 423.52   | 0.59                             | 0.62        |  |  |
| 5        | 314.33   | 0.09                             | 0.10        |  |  |

**Table 1.** The inhibition screening of compounds on porcine kidney DAO(pkDAO).

| Commonwed | pkDAO (uM) |   |       |  |
|-----------|------------|---|-------|--|
| Compound  | IC50       | ± | SEM   |  |
| 71        | 20.406     | ± | 1.057 |  |
| 5         | 4.460      | ± | 1.036 |  |
| 7s        | 35.519     | ± | 1.050 |  |
| 7i        | 25.783     | ± | 1.046 |  |
| 7e        | 30.539     | ± | 1.072 |  |
| 7j        | 29.029     | ± | 1.045 |  |
| 7q        | 26.679     | ± | 1.061 |  |

Table 2. The IC50 of compounds on porcine kidney DAO (pkDAO).

Figure 1. Concentration-inhibition curves. For compounds with porcine kidney DAO IC<sub>50</sub> values, inhibition curves are shown. Compound No. are listed on the right. (each data point represented an average  $\pm$  triplicates of standard error mean; SEM)



**Figure 2**. The inhibition mechanism of compound **5** on porcine kidney DAO was determined through (a) Michaelis-Menten and (b) Lineweaver-Burk diagram of *D*-alanine substrate competition. The absence (dotted line) or presence of compound **5** at concentrations of 2  $\mu$ M (grey), 4  $\mu$ M (black) and 8  $\mu$ M (dotted) are presented. The percentage velocity data were normalized to the highest substrate [*D*-Ala] concentration of 33444.8  $\mu$ M in the absence of inhibitor. (each data point represented an average ± triplicates of standard error mean; SEM)





# VII.<sup>1</sup>H NMR, <sup>13</sup>C NMR, LRMS, HRMS, IR spectra and HPLCs



<sup>1</sup>H NMR spectrum (300 MHz) of compound **4** (Diastereomeric mixture) in Acetone-d<sub>6</sub>



<sup>1</sup>H NMR spectrum (300 MHz) of compound **4** (Single diastereomer) in Acetone-d<sub>6</sub>



 $^{13}$ C NMR spectrum (75 MHz) of compound 4 (single diastereomer) in Acetone-d<sub>6</sub>



DEPT NMR spectrum (75 MHz) of compound 4 (single diastereomer) in Acetone-d<sub>6</sub>



PD-N3-O4



ESI-LRMS of compound 4 (single diastereomer)

| Analysis Info<br>Analysis Name<br>D:DataInctu serviceIdataI2015/20150721\ib-N7-052 394 ESI+_RA4_01_6801.d<br>Method<br>Small molecule.m<br>Sample Name<br>ib-N7-052 394 ESI+<br>Comment<br>Acquisition Parameter<br>Source Type<br>ESI<br>Scan Begin<br>Scan End<br>1500 m/z<br>Set Capillary<br>Positive<br>Active<br>Set Capillary<br>Set Capillary<br>Positive<br>Set Nebulizer<br>JO Bar<br>200 °C<br>Set Dry Heater<br>Set Dry Heater<br>200 °C<br>Set APCI Heater<br>0 °C<br>Chemical Formula: C <sub>17</sub> H <sub>19</sub> BrN <sub>2</sub> O <sub>4</sub><br>Exact Mass: 394.0528<br>Molecular Weight: 395.2478 |                                                                    |                                                        |                                            | Display                                                            | Report                                         |                                                     |                                                                                       |                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|
| Acquisition Parameter Ion Polarity Positive Set Nebulizer 1.0 Bar   Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Heater 200 °C   Scan End 1500 m/z Set Charging Voltage 2000 V Set Divert Valve 0.0 Winin   Scan End 1500 m/z Set Charging Voltage 2000 V Set Divert Valve 0.0 Winin   Scan End 1500 m/z Set Corona 0 nA Set APCI Heater 0.0 Winin   Intens. x100 395.0608 397.0589 ib-N7-052 394 ESI+_RA4_01_6901.d: +MS, 0.6min #   6- 4- 4- 4- 4- 4- 4- 4-   2- 395.0608 397.0589 4- 4- 4- 4-   6- 4- 395.0608 397.0589 4- 4- 4-   6- 4- 4- 4- 4- 4- 4- 4-   2- 396.0639 398.0619 398.0619 398.0619 398.0619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment | D:\Data\nctu ser<br>Small molecule.<br>ib-N7-052 394 E | rvice\data\201{<br>m<br>ESI+               | 5\20150721\ib-l                                                    | N7-052 394 ESI                                 | Acquisition<br>+_RA4_01_0<br>Operator<br>Instrument | Date 7/21/20<br>901.d<br>NCTU<br>impact HD                                            | 15 1:50:51 PM<br>1819696.00                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acquisition Par<br>Source Type<br>Focus<br>Scan Begin<br>Scan End  | ameter<br>ESI<br>Active<br>50 m/z<br>1500 m/z          | lon Pe<br>Set C<br>Set E<br>Set C<br>Set C | olarity<br>apillary<br>nd Plate Offset<br>narging Voltage<br>orona | Positive<br>4500 V<br>-500 V<br>2000 V<br>0 nA |                                                     | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve<br>Set APCI Heater | 1.0 Bar<br>200 °C<br>6.0 I/min<br>Waste<br>0 °C |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intens.<br>x10 <sup>6</sup><br>8-                                  | 395.0608 39<br>396.063                                 | <sup>17.0589</sup><br>398.0619             | Chemica<br>Ex<br>Molec                                             | Al Formula: Contact Mass: 39-<br>cular Weight: | ib-N7-052<br>                                       | 394 ESI+_RA4_01_                                                                      | 6901.d: +MS, 0.6mi                              |

ESI-HRMS of compound 4 (single diastereomer)



<sup>1</sup>H NMR spectrum (300 MHz) of compound **5** in CDCl<sub>3</sub>



 $^{13}$ C NMR spectrum (75 MHz) of compound **5** in CDCl<sub>3</sub>



DEPT NMR spectrum (75 MHz) of compound  $\mathbf{5}$  in CDCl<sub>3</sub>



ESI-LRMS of compound 5



EI-HRMS of compound **5** 



IR spectrum of compound 5



Result Table (Uncal - D:\PRASHANT HPLC PDF\PD-N4-L-19-02)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 13.600               | 25.421         | 1.179          | 0.1         | 0.6           | 0.34         |
| 2 | 15.956               | 25.240         | 0.996          | 0.1         | 0.5           | 0.40         |
| 3 | 49.756               | 22114.626      | 204.143        | 99.8        | 98.9          | 1.62         |
|   | Total                | 22165.287      | 206.318        | 100.0       | 100.0         |              |

HPLC of compound 5



Result Table (Uncal - D:\PRASHANT HPLC PDF\PD-N4-DL-19-02)

|    | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|----|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1  | 2.748                | 6.931          | 0.716          | 0.0         | 0.2           | 0.16         |
| 2  | 3.508                | 3.477          | 0.309          | 0.0         | 0.1           | 0.18         |
| 3  | 8.148                | 5.337          | 0.384          | 0.0         | 0.1           | 0.22         |
| 4  | 10.804               | 37.284         | 1.594          | 0.1         | 0.4           | 0.36         |
| 5  | 12.448               | 19.945         | 1.020          | 0.0         | 0.2           | 0.31         |
| 6  | 13.320               | 624.902        | 29.212         | 1.1         | 6.7           | 0.32         |
| 7  | 14.488               | 21.752         | 0.901          | 0.0         | 0.2           | 0.39         |
| 8  | 15.612               | 623.842        | 24.709         | 1.1         | 5.7           | 0.39         |
| 9  | 36.688               | 99.581         | 0.409          | 0.2         | 0.1           | 3.32         |
| 10 | 49.076               | 28951.541      | 271.332        | 52.3        | 62.2          | 1.61         |
| 11 | 55.736               | 24919.613      | 105.959        | 45.1        | 24.3          | 3.42         |
|    | Total                | 55314.204      | 436.547        | 100.0       | 100.0         |              |

HPLC (co-injection) of compound **5** (L-form) and **5'** (D-form)



<sup>1</sup>H NMR spectrum (300 MHz) of compound **7a** in CDCl<sub>3</sub>



 $^{13}C$  NMR spectrum (75 MHz) of compound **7a** in CDCl<sub>3</sub>



PD-N4-14

Scan ES+ 2.96e7

S30



EI-HRMS of compound 7a



IR spectrum of compound 7a



|   | Result Table (Uncal - D:\INDRAJEET\HPLC DATA\PD-N4-014P - UV) |               |        |       |       |  |  |  |  |
|---|---------------------------------------------------------------|---------------|--------|-------|-------|--|--|--|--|
|   | Reten. Time<br>[min]                                          | Height<br>[%] |        |       |       |  |  |  |  |
| 1 | 2.096                                                         | 7.285         | 0.718  | 0.2   | 1.1   |  |  |  |  |
| 2 | 3.916                                                         | 1.480         | 0.251  | 0.0   | 0.4   |  |  |  |  |
| 3 | 21.188                                                        | 4463.766      | 64.346 | 99.8  | 98.5  |  |  |  |  |
|   | Total                                                         | 4472.530      | 65.315 | 100.0 | 100.0 |  |  |  |  |

HPLC of compound 7a



<sup>1</sup>H NMR spectrum (300 MHz) of compound **7b** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum (75 MHz) of compound **7b** in CDCl<sub>3</sub>



# 2014082201\_PD-N4-35\_140822165613 #383 RT: 1.33 AV: 1 NL: 1.66E7 T: {0,0} + c EI Full ms [50.00-1000.00]


EI-HRMS of compound **7b** 



IR spectrum of compound 7b



Result Table (Uncal - D:\PRASHANT HPLC PDF\PD-N4-P-CLDMF)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 2.816                | 13.099         | 1.000          | 0.3         | 2.2           | 0.20         |
| 2 | 6.148                | 1.670          | 0.250          | 0.0         | 0.5           | 0.10         |
| 3 | 21.316               | 3737.111       | 45.244         | 99.6        | 97.3          | 1.31         |
|   | Total                | 3751.880       | 46.494         | 100.0       | 100.0         |              |

HPLC of compound 7b



<sup>1</sup>H NMR spectrum (300 MHz) of compound 7c in CDCl<sub>3</sub>



 $^{13}\text{C}$  NMR spectrum (75 MHz) of compound **7c** in CDCl<sub>3</sub>



2014012201\_ib-N6-087 #403 RT: 1.40 AV: 1 SB: 109 1.71-1.94 , 0.87-1.02 NL: 7.99E7 T: {0,0} + c EI Full ms [50.00-900.00]

EI-LRMS of compound **7**c



EI-HRMS of compound **7**c



IR spectrum of compound 7c



Result Table (Uncal - D: \INDRAJEET \HPLC DATA \IB-N7-087 - UV)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 2.124                | 12.244         | 0.755          | 0.2         | 1.0           |
| 2 | 3.920                | 2.299          | 0.365          | 0.0         | 0.5           |
| 3 | 4.704                | 2.333          | 0.296          | 0.0         | 0.4           |
| 4 | 7.728                | 22.959         | 0.515          | 0.5         | 0.7           |
| 5 | 21.288               | 5018.974       | 71.674         | 99.2        | 97.4          |
|   | Total                | 5058.809       | 73.604         | 100.0       | 100.0         |

HPLC of compound 7c



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7d** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum (101 MHz) of compound **7d** in CDCl<sub>3</sub>



EI-LRMS of compound 7d



EI-HRMS of compound **7d** 



IR spectrum of compound 7d



| Result Table | (Uncal - D: \Indrajeet\HPLC data\TT-LN2-09 - U | V) |
|--------------|------------------------------------------------|----|
|--------------|------------------------------------------------|----|

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 2.720                | 26.642         | 1.619          | 0.8         | 3.3           | 0.34         |
| 2 | 3.028                | 15.490         | 1.343          | 0.5         | 2.7           | 0.24         |
| 3 | 3.348                | 31.577         | 1.184          | 1.0         | 2.4           | 0.55         |
| 4 | 4.304                | 145.225        | 6.492          | 4.5         | 13.2          | 0.12         |
| 5 | 6.432                | 10.361         | 0.473          | 0.3         | 1.0           | 0.23         |
| 6 | 7.260                | 13.371         | 1.043          | 0.4         | 2.1           | 0.16         |
| 7 | 8.064                | 12.908         | 0.362          | 0.4         | 0.7           | 0.64         |
| 8 | 39.336               | 2968.802       | 36.836         | 92.1        | 74.6          | 1.23         |
|   | Total                | 3224.378       | 49.352         | 100.0       | 100.0         |              |

## HPLC of compound 7d



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7d'** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum (101 MHz) of compound **7d'** in CDCl<sub>3</sub>



EI-LRMS of compound 7d'



EI-HRMS of compound 7d'



IR spectrum of compound 7d'



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7e** in acetone- $d_6$ 



<sup>13</sup>C NMR spectrum (101 MHz) of compound **7e** in acetone- $d_6$ 



201406162704\_LN2-D19 #408-436 RT: 1.42-1.51 AV: 29 SB: 50 0.89-1.06 NL: 4.42E6 T: {0,0} + c EI Full ms [50.00-900.00]



EI-HRMS of compound **7e** 



IR spectrum of compound 7e



| Result Table | (Uncal - | D: Indrajeet HPLC data TT-LN2-019 - U | UV) |
|--------------|----------|---------------------------------------|-----|
|--------------|----------|---------------------------------------|-----|

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 1.948                | 33.752         | 2.553          | 0.5         | 2.7           |
| 2 | 2.344                | 10.666         | 1.126          | 0.2         | 1.2           |
| 3 | 2.936                | 2.330          | 0.328          | 0.0         | 0.3           |
| 4 | 3.644                | 2.267          | 0.447          | 0.0         | 0.5           |
| 5 | 4.384                | 3.304          | 0.369          | 0.1         | 0.4           |
| 6 | 6.864                | 57.905         | 0.892          | 0.9         | 0.9           |
| 7 | 19.868               | 6032.542       | 88.426         | 98.2        | 93.9          |
|   | Total                | 6142.768       | 94.143         | 100.0       | 100.0         |

## HPLC of compound 7e



<sup>1</sup>H NMR spectrum (300 MHz) of compound **7f** in acetone- $d_6$ 



 $^{13}$ C NMR spectrum (75 MHz) of compound **7f** in acetone-d<sub>6</sub>



EI-LRMS of compound **7f** 



EI-HRMS of compound **7f** 



IR spectrum of compound **7f** 



Result Table (Uncal - D: \INDRAJEET \HPLC DATA \IB-N7-005(I) - UV)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 2.324                | 20.669         | 0.853          | 0.3         | 0.9           |
| 2 | 4.232                | 4.666          | 0.696          | 0.1         | 0.8           |
| 3 | 5.080                | 5.681          | 0.634          | 0.1         | 0.7           |
| 4 | 8.068                | 55.355         | 1.011          | 0.8         | 1.1           |
| 5 | 23.020               | 6710.792       | 87.037         | 98.7        | 96.5          |
|   | Total                | 6797.163       | 90.233         | 100.0       | 100.0         |

HPLC of compound **7f** 



<sup>1</sup>H NMR spectrum (300 MHz) of compound 7g in acetone-d<sub>6</sub>



 $^{13}$ C NMR spectrum (75 MHz) of compound **7g** in acetone-d<sub>6</sub>



EI-LRMS of compound 7g



EI-HRMS of compound **7**g


IR spectrum of compound 7g



| Result Table (Uncal - D: \INDRAJEET\HPLC DATA\IB-N7-043P - UV) |                      |                |                |             |               |  |
|----------------------------------------------------------------|----------------------|----------------|----------------|-------------|---------------|--|
|                                                                | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |  |
| 1                                                              | 3.884                | 26.167         | 1.262          | 0.3         | 1.7           |  |
| 2                                                              | 38.780               | 7752.907       | 71.369         | 99.7        | 96.3          |  |
|                                                                | Total                | 7779.074       | 72.632         | 100.0       | 100.0         |  |

HPLC of compound 7g



<sup>1</sup>H NMR spectrum (300 MHz) of compound **7h** in acetone- $d_6$ 



 $^{13}C$  NMR spectrum (75 MHz) of compound **7h** in CDCl<sub>3</sub>



EI-LRMS of compound 7h



EI-HRMS of compound **7h** 



IR spectrum of compound **7h** 



HPLC of compound **7h** 



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7i** in acetone- $d_6$ 



 $^{13}$ C NMR spectrum (101 MHz) of compound **7i** in acetone-d<sub>6</sub>







IR spectrum of compound 7i



Result Table (Uncal - D: \INDRAJEET HPLC DATA \TT-LN2-018 - UV)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 3.980                | 6.502          | 0.396          | 0.1         | 0.5           |
| 2 | 7.336                | 6.736          | 0.637          | 0.1         | 0.7           |
| 3 | 8.820                | 6.735          | 0.567          | 0.1         | 0.6           |
| 4 | 11.484               | 19.447         | 0.346          | 0.2         | 0.4           |
| 5 | 14.104               | 40.795         | 0.773          | 0.4         | 0.9           |
| 6 | 39.764               | 10348.477      | 85.279         | 99.2        | 96.9          |
|   | Total                | 10428.692      | 88.001         | 100.0       | 100.0         |

HPLC of compound 7i



<sup>1</sup>H NMR spectrum (400 MHz) of compound 7j in acetone-d<sub>6</sub>



 $^{13}$ C NMR spectrum (101 MHz) of compound **7j** in acetone-d<sub>6</sub>



2014070908\_TT-LN2-020 #312 RT: 1.09 AV: 1 NL: 3.97E7 T: {0,0} + c EI Full ms [50.00-900.00]



EI-HRMS of compound 7j



IR spectrum of compound 7j



| Result Table (Uncal - D: UNDRAJEET (HPLC DATA (TT-LN2-020 - UV) |                      |                |                |             |               |  |
|-----------------------------------------------------------------|----------------------|----------------|----------------|-------------|---------------|--|
|                                                                 | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |  |
| 1                                                               | 2.468                | 13.284         | 0.969          | 0.3         | 1.4           |  |
| 2                                                               | 25.144               | 5215.595       | 66.060         | 99.7        | 98.6          |  |
|                                                                 | Total                | 5228.879       | 67.029         | 100.0       | 100.0         |  |

HPLC of compound 7j



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7k** in acetone- $d_6$ 



 $^{13}$ C NMR spectrum (101 MHz) of compound **7k** in acetone-d<sub>6</sub>



T: {0,0} + c El Full ms [50.00-900.00]

201407172502\_ib-N7-065 #304 RT: 1.06 AV: 1 NL: 8.77E7

EI-LRMS of compound **7**k



EI-HRMS of compound **7**k



IR spectrum of compound 7k



| Result Table (Uncal - D:\INDRAJEET\HPLC DATA\IB-N7-065 - UV) |                      |                |                |             |               |  |
|--------------------------------------------------------------|----------------------|----------------|----------------|-------------|---------------|--|
|                                                              | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |  |
| 1                                                            | 2.692                | 25.128         | 1.873          | 0.4         | 3.1           |  |
| 2                                                            | 4.904                | 7.371          | 0.759          | 0.1         | 1.2           |  |
| 3                                                            | 28.924               | 5657.051       | 58.251         | 99.4        | 95.7          |  |
|                                                              | Total                | 5689.551       | 60.883         | 100.0       | 100.0         |  |

HPLC of compound 7k



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7**l in acetone- $d_6$ 



 $^{13}$ C NMR spectrum (101 MHz) of compound **71** in acetone-d<sub>6</sub>



## 201407172908\_ib-N7-064 #352 RT: 1.23 AV: 1 NL: 6.93E7 T: {0,0} + c EI Full ms [50.00-900.00]

EI-LRMS of compound **7**l



EI-HRMS of compound 71



IR spectrum of compound 71



Result Table (Uncal - D:\INDRAJEET\HPLC DATA\IB-N7-064 - UV)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 2.260                | 22.299         | 1.548          | 0.4         | 2.2           |
| 2 | 4.252                | 1.592          | 0.297          | 0.0         | 0.4           |
| 3 | 5.120                | 2.388          | 0.283          | 0.0         | 0.4           |
| 4 | <b>8.34</b> 4        | 61.171         | 0.890          | 1.1         | 1.3           |
| 5 | 23.968               | 5639.881       | 67.852         | 98.5        | 95.7          |
|   | Total                | 5727.331       | 70.870         | 100.0       | 100.0         |

## HPLC of compound **7**l



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7m** in acetone- $d_6$ 



<sup>13</sup>C NMR spectrum (101 MHz) of compound **7m** in acetone- $d_6$ 



2014080103\_TT-LN2-039 #464 RT: 1.61 AV: 1 NL: 2.17E7 T: {0,0} + c EI Full ms [50.00-900.00]

EI-LRMS of compound 7m



EI-HRMS of compound **7m**


IR spectrum of compound 7m



Result Table (Uncal - D: \INDRAJEET \HPLC DATA \TT-LN2-039 - UV)

|   | Reten, Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 3.868                | 6.529          | 0.578          | 0.1         | 0.8           |
| 2 | 7.306                | 4.854          | 0.578          | 0.1         | 0.8           |
| 3 | 8.760                | 2.564          | 0.223          | 0.0         | 0.3           |
| 4 | 39.424               | 8987.213       | 74.588         | 99.8        | 98.2          |
|   | Total                | 9001.160       | 75.966         | 100.0       | 100.0         |

HPLC of compound 7m



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7n** in acetone- $d_6$ 



<sup>13</sup>C NMR spectrum (101 MHz) of compound **7n** in acetone- $d_6$ 



2014080816\_TT-LN2-041 #345 RT: 1.20 AV: 1 NL: 2.87E7 T: {0,0} + c EI Full ms [50.00-1050.00]

EI-LRMS of compound 7n



EI-HRMS of compound **7n** 



IR spectrum of compound **7n** 



|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 1.932                | 16.755         | 1.822          | 0.4         | 2.9           |
| 2 | 3.484                | 5.681          | 0.709          | 0.1         | 1.1           |
| 3 | 20.500               | 4392.030       | 60.551         | 99.5        | 96.0          |
|   | Total                | 4414.466       | 63.082         | 100.0       | 100.0         |

Result Table (Uncal - D:\INDRAJEET\HPLC DATA\IB-N7-041 - UV)

HPLC of compound 7n



<sup>1</sup>H NMR spectrum (400 MHz) of compound **70** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum (101 MHz) of compound **70** in CDCl<sub>3</sub>



2014070914\_TT-LN1-075 #342 RT: 1.19 AV: 1 NL: 9.81E6

EI-LRMS of compound **70** 



EI-HRMS of compound **70** 



IR spectrum of compound **70** 



|   | Hestic rate (oncar - D. protocice (necc DATA (11-DAT-002 - 07) |                |                |             |               |  |  |  |
|---|----------------------------------------------------------------|----------------|----------------|-------------|---------------|--|--|--|
|   | Reten. Time<br>[min]                                           | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |  |  |  |
| 1 | 3.020                                                          | 15.492         | 0.878          | 0.2         | 1.2           |  |  |  |
| 2 | 5.700                                                          | 2.603          | 0.302          | 0.0         | 0.4           |  |  |  |
| 3 | 6.852                                                          | 2.342          | 0.237          | 0.0         | 0.3           |  |  |  |
| 4 | 30.900                                                         | 6827.827       | 71.801         | 99.7        | 96.1          |  |  |  |
|   | Total                                                          | 6848.264       | 73.217         | 100.0       | 100.0         |  |  |  |

HPLC of compound **70** 







2014070910\_TT-LN2-023 #315 RT: 1.10 AV: 1 NL: 1.05E7 T: {0,0} + c El Full ms [50.00-900.00]

EI-LRMS of compound **7p** 



EI-HRMS of compound **7p** 



IR spectrum of compound 7p



| Result Table | e (Uncal - D: (IND) | RAJEET(HPLC D | 4TA (TT-LN2-023 | s- UV) |
|--------------|---------------------|---------------|-----------------|--------|
|              |                     |               |                 |        |
|              |                     |               |                 |        |

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 2.104                | 11.853         | 0.746          | 0.2         | 1.0           |
| 2 | 3.916                | 3.168          | 0.611          | 0.1         | 0.8           |
| 3 | 4.688                | 2.277          | 0.261          | 0.0         | 0.4           |
| 4 | 21.152               | 5146.503       | 72.047         | 99.7        | 97.8          |
|   | Total                | 5163.802       | 73.665         | 100.0       | 100.0         |

HPLC of compound 7p



<sup>1</sup>H NMR spectrum (400 MHz) of compound 7q in acetone-d<sub>6</sub>



<sup>13</sup>C NMR spectrum (101 MHz) of compound 7q in acetone-d<sub>6</sub>



EI-LRMS of compound 7q



EI-HRMS of compound 7q



IR spectrum of compound 7q



| Result Table (U | Incal - D: | INDRAJEET | HPLC DATA | IB-N7-044 - UN | 0 |
|-----------------|------------|-----------|-----------|----------------|---|
|-----------------|------------|-----------|-----------|----------------|---|

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 3.384                | 30.977         | 1.569          | 0.4         | 2.2           |
| 2 | 6.416                | 2.841          | 0.246          | 0.0         | 0.4           |
| 3 | 7.752                | 7.524          | 0.442          | 0.1         | 0.6           |
| 4 | 9.052                | 106.477        | 1.290          | 1.3         | 1.8           |
| 5 | 36.264               | 8301.639       | 66.248         | 98.3        | 94.9          |
|   | Total                | 8449.459       | 69.795         | 100.0       | 100.0         |

HPLC of compound 7q



<sup>1</sup>H NMR spectrum (400 MHz) of compound 7r in acetone-d<sub>6</sub>



<sup>13</sup>C NMR spectrum (101 MHz) of compound 7r in acetone-d<sub>6</sub>



2014080816\_ib-N7-076 #409 RT: 1.42 AV: 1 NL: 5.81E7 T: {0,0} + c EI Full ms [50.00-900.00]

EI-LRMS of compound 7r



EI-HRMS of compound **7r** 



IR spectrum of compound **7r** 



|   | Reten, Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 2.676                | 5.060          | 0.857          | 0.0         | 0.3           |
| 2 | 3.296                | 3.716          | 0.362          | 0.0         | 0.1           |
| 3 | 3.912                | 1.814          | 0.291          | 0.0         | 0.1           |
| 4 | 5.076                | 25.238         | 1.707          | 0.1         | 0.7           |
| 5 | 35.816               | 20359.697      | 255.846        | 99.8        | 96.8          |
|   | Total                | 20395.525      | 259.061        | 100.0       | 100.0         |

Result Table (Uncal - D: \Indrajeet HPLC data \ib-N7-076 - UV)

HPLC of compound 7r



<sup>1</sup>H NMR spectrum (400 MHz) of compound **7s** in CDCl<sub>3</sub>



 $^{13}$ C NMR spectrum (101 MHz) of compound **7s** in CDCl<sub>3</sub>



EI-LRMS of compound 7s



EI-HRMS of compound 7s


IR spectrum of compound 7s



|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] |
|---|----------------------|----------------|----------------|-------------|---------------|
| 1 | 3.436                | 5.502          | 0.497          | 0.1         | 0.7           |
| 2 | 6.400                | 3.800          | 0.439          | 0.1         | 0.6           |
| 3 | 7.696                | 1.766          | 0.152          | 0.0         | 0.2           |
| 4 | 34.624               | 7526.732       | 71.195         | 99.9        | 98.5          |
| [ | Total                | 7537.800       | 72.282         | 100.0       | 100.0         |

HPLC of compound 7s

### VIII. X-ray crystal structure of compound 5



### **ORTEP diagram of compound 5.** Atomic displacement ellipsoids are

drawn at the 50% probability level

#### CCDC no. of 5: 1033162

| Identification code  | cu_140110_0m                                                   |
|----------------------|----------------------------------------------------------------|
| Empirical formula    | C17 H18 N2 O4                                                  |
| Formula weight       | 314.33                                                         |
| Temperature          | 296(2) K                                                       |
| Wavelength           | 1.54178 Å                                                      |
| Crystal system       | Triclinic                                                      |
| Space group          | P 1                                                            |
| Unit cell dimensions | $a = 7.9602(7) \text{ Å}$ $\alpha = 94.238(5)^{\circ}.$        |
|                      | $b = 8.6689(7) \text{ Å} \qquad \beta = 97.302(6)^{\circ}.$    |
|                      | $c = 11.7774(11) \text{ Å} \qquad \gamma = 96.834(5)^{\circ}.$ |
| Volume               | 797.12(12) Å <sup>3</sup>                                      |
| Z                    | 2                                                              |

| Table 1. | Crystal data | and structure | refinement for cu | 140110_0m. |
|----------|--------------|---------------|-------------------|------------|
|----------|--------------|---------------|-------------------|------------|

| Density (calculated)                     | 1.310 Mg/m <sup>3</sup>                     |  |
|------------------------------------------|---------------------------------------------|--|
| Absorption coefficient                   | 0.778 mm <sup>-1</sup>                      |  |
| F(000)                                   | 332                                         |  |
| Crystal size                             | 0.25 x 0.15 x 0.12 mm <sup>3</sup>          |  |
| Theta range for data collection          | 5.160 to 66.403°.                           |  |
| Index ranges                             | -9<=h<=9, -10<=k<=10, -13<=l<=13            |  |
| Reflections collected                    | 8958                                        |  |
| Independent reflections                  | 4412 [R(int) = 0.0458]                      |  |
| Completeness to theta = $67.679^{\circ}$ | 93.8 %                                      |  |
| Absorption correction                    | Semi-empirical from equivalents             |  |
| Max. and min. transmission               | 0.9492 and 0.6197                           |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters           | 4412 / 3 / 420                              |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.096                                       |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0744, wR2 = 0.1953                   |  |
| R indices (all data)                     | R1 = 0.0779, wR2 = 0.2031                   |  |
| Absolute structure parameter             | 0.3(4)                                      |  |
| Extinction coefficient                   | n/a                                         |  |
| Largest diff. peak and hole              | 0.350 and -0.345 e.Å <sup>-3</sup>          |  |

Table 2. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters (Å  $^2x \ 10^3$ )for cu\_140110\_0m. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|      | Х        | У       | Z       | U(eq) |
|------|----------|---------|---------|-------|
|      |          |         |         |       |
| C(1) | 9366(6)  | 470(6)  | 2219(4) | 53(1) |
| C(2) | 9544(5)  | 1576(5) | 3223(4) | 52(1) |
| C(3) | 10412(6) | 3859(6) | 4287(5) | 58(1) |
| C(4) | 11152(7) | 5370(6) | 4723(6) | 70(1) |
| C(5) | 10941(8) | 5870(7) | 5815(6) | 75(2) |
| C(6) | 10013(8) | 4909(7) | 6483(6) | 78(2) |
| C(7) | 9264(7)  | 3421(7) | 6055(5) | 69(1) |
| C(8) | 9474(6)  | 2874(6) | 4954(5) | 56(1) |

| C(9)  | 8926(5)  | 1431(5)   | 4244(4)  | 52(1)  |
|-------|----------|-----------|----------|--------|
| C(10) | 7800(6)  | 77(6)     | 4572(5)  | 60(1)  |
| C(11) | 8308(6)  | -1512(5)  | 4239(4)  | 54(1)  |
| C(12) | 8700(8)  | -1065(7)  | 2192(5)  | 66(1)  |
| C(13) | 9839(6)  | 1002(7)   | 1143(5)  | 59(1)  |
| C(14) | 9885(10) | 387(10)   | -830(6)  | 89(2)  |
| C(15) | 9170(20) | -760(20)  | -1698(9) | 188(7) |
| C(16) | 7110(6)  | -2763(6)  | 4689(5)  | 59(1)  |
| C(17) | 5895(9)  | -3633(10) | 6267(6)  | 89(2)  |
| C(18) | 3906(5)  | 959(6)    | 3257(4)  | 51(1)  |
| C(19) | 3740(5)  | -128(5)   | 2238(4)  | 50(1)  |
| C(20) | 3222(6)  | -2482(6)  | 1220(5)  | 58(1)  |
| C(21) | 2757(9)  | -4050(7)  | 830(6)   | 76(2)  |
| C(22) | 2842(9)  | -4498(7)  | -287(6)  | 79(2)  |
| C(23) | 3369(9)  | -3437(8)  | -1044(6) | 78(2)  |
| C(24) | 3807(8)  | -1863(7)  | -670(5)  | 70(1)  |
| C(25) | 3717(6)  | -1366(6)  | 474(5)   | 57(1)  |
| C(26) | 4010(6)  | 120(6)    | 1139(4)  | 53(1)  |
| C(27) | 4544(7)  | 1650(5)   | 692(4)   | 58(1)  |
| C(28) | 5933(6)  | 2672(5)   | 1516(4)  | 51(1)  |
| C(29) | 4603(6)  | 2493(6)   | 3314(4)  | 53(1)  |
| C(30) | 3333(6)  | 406(6)    | 4310(4)  | 55(1)  |
| C(31) | 3119(9)  | 1058(9)   | 6268(6)  | 80(2)  |
| C(32) | 3732(15) | 2341(12)  | 7165(7)  | 113(3) |
| C(33) | 6764(6)  | 4066(6)   | 969(5)   | 58(1)  |
| C(34) | 7849(11) | 4945(10)  | -648(7)  | 103(3) |
| N(1)  | 10432(5) | 3065(5)   | 3262(4)  | 60(1)  |
| N(2)  | 8211(8)  | -1894(6)  | 3019(5)  | 81(2)  |
| N(3)  | 3244(6)  | -1719(5)  | 2276(4)  | 61(1)  |
| N(4)  | 5358(6)  | 3281(5)   | 2533(4)  | 61(1)  |
| O(1)  | 10497(6) | 2321(5)   | 1034(4)  | 74(1)  |
| O(2)  | 9460(6)  | -69(6)    | 246(4)   | 78(1)  |
| O(3)  | 6291(7)  | -3859(5)  | 4091(4)  | 90(2)  |
| O(4)  | 7043(5)  | -2506(5)  | 5786(3)  | 70(1)  |

| O(5) | 2721(6) | -915(5) | 4421(4) | 75(1) |
|------|---------|---------|---------|-------|
| O(6) | 3589(5) | 1509(5) | 5199(4) | 70(1) |
| O(7) | 7214(7) | 5322(5) | 1477(4) | 87(1) |
| O(8) | 6999(5) | 3702(5) | -88(4)  | 73(1) |

| C(1)-C(12)   | 1.369(8)  |
|--------------|-----------|
| C(1)-C(2)    | 1.448(7)  |
| C(1)-C(13)   | 1.457(7)  |
| C(2)-C(9)    | 1.365(7)  |
| C(2)-N(1)    | 1.391(6)  |
| C(3)-N(1)    | 1.347(7)  |
| C(3)-C(4)    | 1.403(8)  |
| C(3)-C(8)    | 1.415(7)  |
| C(4)-C(5)    | 1.364(9)  |
| C(4)-H(4)    | 0.9300    |
| C(5)-C(6)    | 1.399(10) |
| C(5)-H(5)    | 0.9300    |
| C(6)-C(7)    | 1.385(8)  |
| C(6)-H(6)    | 0.9300    |
| C(7)-C(8)    | 1.385(8)  |
| C(7)-H(7)    | 0.9300    |
| C(8)-C(9)    | 1.441(7)  |
| C(9)-C(10)   | 1.495(6)  |
| C(10)-C(11)  | 1.519(6)  |
| C(10)-H(10A) | 0.9700    |
| C(10)-H(10B) | 0.9700    |
| C(11)-N(2)   | 1.441(7)  |
| C(11)-C(16)  | 1.527(6)  |
| С(11)-Н(11)  | 0.9800    |
| C(12)-N(2)   | 1.322(8)  |
| C(12)-H(12)  | 0.9300    |
| C(13)-O(1)   | 1.223(7)  |

Table 3. Bond lengths [Å ] and angles [°] for  $cu_140110_0m$ .

| C(13)-O(2)   | 1.332(8)  |
|--------------|-----------|
| C(14)-C(15)  | 1.385(14) |
| C(14)-O(2)   | 1.425(8)  |
| C(14)-H(14A) | 0.9700    |
| C(14)-H(14B) | 0.9700    |
| C(15)-H(15A) | 0.9600    |
| C(15)-H(15B) | 0.9600    |
| C(15)-H(15C) | 0.9600    |
| C(16)-O(3)   | 1.209(7)  |
| C(16)-O(4)   | 1.304(7)  |
| C(17)-O(4)   | 1.453(7)  |
| C(17)-H(17A) | 0.9600    |
| C(17)-H(17B) | 0.9600    |
| С(17)-Н(17С) | 0.9600    |
| C(18)-C(29)  | 1.372(7)  |
| C(18)-C(19)  | 1.452(7)  |
| C(18)-C(30)  | 1.468(7)  |
| C(19)-C(26)  | 1.367(7)  |
| C(19)-N(3)   | 1.395(6)  |
| C(20)-N(3)   | 1.361(8)  |
| C(20)-C(21)  | 1.393(8)  |
| C(20)-C(25)  | 1.409(7)  |
| C(21)-C(22)  | 1.356(10) |
| C(21)-H(21)  | 0.9300    |
| C(22)-C(23)  | 1.393(10) |
| C(22)-H(22)  | 0.9300    |
| C(23)-C(24)  | 1.392(9)  |
| С(23)-Н(23)  | 0.9300    |
| C(24)-C(25)  | 1.396(8)  |
| C(24)-H(24)  | 0.9300    |
| C(25)-C(26)  | 1.436(7)  |
| C(26)-C(27)  | 1.497(6)  |
| C(27)-C(28)  | 1.523(6)  |

| C(27)-H(27A)     | 0.9700    |
|------------------|-----------|
| C(27)-H(27B)     | 0.9700    |
| C(28)-N(4)       | 1.424(7)  |
| C(28)-C(33)      | 1.532(6)  |
| C(28)-H(28)      | 0.9800    |
| C(29)-N(4)       | 1.344(6)  |
| C(29)-H(29)      | 0.9300    |
| C(30)-O(5)       | 1.213(6)  |
| C(30)-O(6)       | 1.342(7)  |
| C(31)-O(6)       | 1.427(7)  |
| C(31)-C(32)      | 1.469(11) |
| C(31)-H(31A)     | 0.9700    |
| C(31)-H(31B)     | 0.9700    |
| C(32)-H(32A)     | 0.9600    |
| C(32)-H(32B)     | 0.9600    |
| C(32)-H(32C)     | 0.9600    |
| C(33)-O(7)       | 1.195(7)  |
| C(33)-O(8)       | 1.303(7)  |
| C(34)-O(8)       | 1.449(7)  |
| C(34)-H(34A)     | 0.9600    |
| C(34)-H(34B)     | 0.9600    |
| C(34)-H(34C)     | 0.9600    |
| N(1)-H(1)        | 0.8600    |
| N(2)-H(2)        | 0.8600    |
| N(3)-H(3)        | 0.8600    |
| N(4)-H(4A)       | 0.8600    |
| C(12)-C(1)-C(2)  | 123.9(5)  |
| C(12)-C(1)-C(13) | 116.6(5)  |
| C(2)-C(1)-C(13)  | 119.4(4)  |
| C(9)-C(2)-N(1)   | 108.1(4)  |
| C(9)-C(2)-C(1)   | 130.0(4)  |
| N(1)-C(2)-C(1)   | 122.0(4)  |
| N(1)-C(3)-C(4)   | 130.8(5)  |
| N(1)-C(3)-C(8)   | 107.9(4)  |

| C(4)-C(3)-C(8)      | 121.3(5) |
|---------------------|----------|
| C(5)-C(4)-C(3)      | 118.0(6) |
| C(5)-C(4)-H(4)      | 121.0    |
| C(3)-C(4)-H(4)      | 121.0    |
| C(4)-C(5)-C(6)      | 121.2(6) |
| C(4)-C(5)-H(5)      | 119.4    |
| C(6)-C(5)-H(5)      | 119.4    |
| C(7)-C(6)-C(5)      | 121.1(6) |
| C(7)-C(6)-H(6)      | 119.4    |
| C(5)-C(6)-H(6)      | 119.4    |
| C(8)-C(7)-C(6)      | 119.0(6) |
| C(8)-C(7)-H(7)      | 120.5    |
| C(6)-C(7)-H(7)      | 120.5    |
| C(7)-C(8)-C(3)      | 119.3(5) |
| C(7)-C(8)-C(9)      | 134.6(5) |
| C(3)-C(8)-C(9)      | 106.1(5) |
| C(2)-C(9)-C(8)      | 107.6(4) |
| C(2)-C(9)-C(10)     | 127.4(5) |
| C(8)-C(9)-C(10)     | 124.8(5) |
| C(9)-C(10)-C(11)    | 114.8(4) |
| C(9)-C(10)-H(10A)   | 108.6    |
| С(11)-С(10)-Н(10А)  | 108.6    |
| C(9)-C(10)-H(10B)   | 108.6    |
| С(11)-С(10)-Н(10В)  | 108.6    |
| H(10A)-C(10)-H(10B) | 107.5    |
| N(2)-C(11)-C(10)    | 114.5(4) |
| N(2)-C(11)-C(16)    | 107.1(4) |
| C(10)-C(11)-C(16)   | 108.7(4) |
| N(2)-C(11)-H(11)    | 108.8    |
| С(10)-С(11)-Н(11)   | 108.8    |
| C(16)-C(11)-H(11)   | 108.8    |
| N(2)-C(12)-C(1)     | 130.8(5) |
| N(2)-C(12)-H(12)    | 114.6    |
| C(1)-C(12)-H(12)    | 114.6    |

| O(1)-C(13)-O(2)     | 121.0(5) |
|---------------------|----------|
| O(1)-C(13)-C(1)     | 124.5(5) |
| O(2)-C(13)-C(1)     | 114.5(5) |
| C(15)-C(14)-O(2)    | 109.8(8) |
| C(15)-C(14)-H(14A)  | 109.7    |
| O(2)-C(14)-H(14A)   | 109.7    |
| C(15)-C(14)-H(14B)  | 109.7    |
| O(2)-C(14)-H(14B)   | 109.7    |
| H(14A)-C(14)-H(14B) | 108.2    |
| C(14)-C(15)-H(15A)  | 109.5    |
| C(14)-C(15)-H(15B)  | 109.5    |
| H(15A)-C(15)-H(15B) | 109.5    |
| C(14)-C(15)-H(15C)  | 109.5    |
| H(15A)-C(15)-H(15C) | 109.5    |
| H(15B)-C(15)-H(15C) | 109.5    |
| O(3)-C(16)-O(4)     | 123.5(5) |
| O(3)-C(16)-C(11)    | 123.8(5) |
| O(4)-C(16)-C(11)    | 112.7(4) |
| O(4)-C(17)-H(17A)   | 109.5    |
| O(4)-C(17)-H(17B)   | 109.5    |
| H(17A)-C(17)-H(17B) | 109.5    |
| O(4)-C(17)-H(17C)   | 109.5    |
| H(17A)-C(17)-H(17C) | 109.5    |
| H(17B)-C(17)-H(17C) | 109.5    |
| C(29)-C(18)-C(19)   | 124.0(5) |
| C(29)-C(18)-C(30)   | 116.8(5) |
| C(19)-C(18)-C(30)   | 119.2(4) |
| C(26)-C(19)-N(3)    | 108.1(4) |
| C(26)-C(19)-C(18)   | 130.6(4) |
| N(3)-C(19)-C(18)    | 121.3(4) |
| N(3)-C(20)-C(21)    | 130.7(5) |
| N(3)-C(20)-C(25)    | 107.8(4) |
| C(21)-C(20)-C(25)   | 121.4(6) |

| C(22)-C(21)-C(20)   | 118.4(6) |
|---------------------|----------|
| C(22)-C(21)-H(21)   | 120.8    |
| C(20)-C(21)-H(21)   | 120.8    |
| C(21)-C(22)-C(23)   | 121.9(6) |
| C(21)-C(22)-H(22)   | 119.1    |
| C(23)-C(22)-H(22)   | 119.1    |
| C(24)-C(23)-C(22)   | 120.3(6) |
| C(24)-C(23)-H(23)   | 119.9    |
| C(22)-C(23)-H(23)   | 119.9    |
| C(23)-C(24)-C(25)   | 119.1(6) |
| C(23)-C(24)-H(24)   | 120.5    |
| C(25)-C(24)-H(24)   | 120.5    |
| C(24)-C(25)-C(20)   | 118.9(5) |
| C(24)-C(25)-C(26)   | 134.5(5) |
| C(20)-C(25)-C(26)   | 106.6(5) |
| C(19)-C(26)-C(25)   | 107.7(4) |
| C(19)-C(26)-C(27)   | 127.0(5) |
| C(25)-C(26)-C(27)   | 125.2(5) |
| C(26)-C(27)-C(28)   | 112.6(4) |
| С(26)-С(27)-Н(27А)  | 109.1    |
| C(28)-C(27)-H(27A)  | 109.1    |
| C(26)-C(27)-H(27B)  | 109.1    |
| C(28)-C(27)-H(27B)  | 109.1    |
| H(27A)-C(27)-H(27B) | 107.8    |
| N(4)-C(28)-C(27)    | 113.8(4) |
| N(4)-C(28)-C(33)    | 106.9(4) |
| C(27)-C(28)-C(33)   | 113.0(4) |
| N(4)-C(28)-H(28)    | 107.6    |
| C(27)-C(28)-H(28)   | 107.6    |
| C(33)-C(28)-H(28)   | 107.6    |
| N(4)-C(29)-C(18)    | 130.1(5) |
| N(4)-C(29)-H(29)    | 115.0    |
| C(18)-C(29)-H(29)   | 115.0    |
| O(5)-C(30)-O(6)     | 120.8(5) |

| O(5)-C(30)-C(18)    | 125.7(5) |
|---------------------|----------|
| O(6)-C(30)-C(18)    | 113.6(4) |
| O(6)-C(31)-C(32)    | 109.1(6) |
| O(6)-C(31)-H(31A)   | 109.9    |
| C(32)-C(31)-H(31A)  | 109.9    |
| O(6)-C(31)-H(31B)   | 109.9    |
| C(32)-C(31)-H(31B)  | 109.9    |
| H(31A)-C(31)-H(31B) | 108.3    |
| C(31)-C(32)-H(32A)  | 109.5    |
| C(31)-C(32)-H(32B)  | 109.5    |
| H(32A)-C(32)-H(32B) | 109.5    |
| C(31)-C(32)-H(32C)  | 109.5    |
| H(32A)-C(32)-H(32C) | 109.5    |
| H(32B)-C(32)-H(32C) | 109.5    |
| O(7)-C(33)-O(8)     | 124.2(5) |
| O(7)-C(33)-C(28)    | 123.4(5) |
| O(8)-C(33)-C(28)    | 112.3(4) |
| O(8)-C(34)-H(34A)   | 109.5    |
| O(8)-C(34)-H(34B)   | 109.5    |
| H(34A)-C(34)-H(34B) | 109.5    |
| O(8)-C(34)-H(34C)   | 109.5    |
| H(34A)-C(34)-H(34C) | 109.5    |
| H(34B)-C(34)-H(34C) | 109.5    |
| C(3)-N(1)-C(2)      | 110.4(4) |
| C(3)-N(1)-H(1)      | 124.8    |
| C(2)-N(1)-H(1)      | 124.8    |
| C(12)-N(2)-C(11)    | 131.7(5) |
| C(12)-N(2)-H(2)     | 114.1    |
| C(11)-N(2)-H(2)     | 114.1    |
| C(20)-N(3)-C(19)    | 109.8(4) |
| C(20)-N(3)-H(3)     | 125.1    |
| C(19)-N(3)-H(3)     | 125.1    |
| C(29)-N(4)-C(28)    | 128.3(4) |
| C(29)-N(4)-H(4A)    | 115.9    |

| C(28)-N(4)-H(4A) | 115.9    |
|------------------|----------|
| C(13)-O(2)-C(14) | 117.0(5) |
| C(16)-O(4)-C(17) | 115.6(5) |
| C(30)-O(6)-C(31) | 117.3(5) |
| C(33)-O(8)-C(34) | 115.6(5) |

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å ^2x \ 10^3)$  for cu\_140110\_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$ ]

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C(1)  | 51(2)           | 51(3)           | 55(3)           | 9(2)            | 6(2)            | -6(2)           |
| C(2)  | 48(2)           | 37(2)           | 70(3)           | 9(2)            | 8(2)            | 0(2)            |
| C(3)  | 55(2)           | 43(2)           | 72(3)           | 5(2)            | 8(2)            | -2(2)           |
| C(4)  | 70(3)           | 44(3)           | 91(4)           | 8(3)            | 9(3)            | -6(2)           |
| C(5)  | 76(3)           | 53(3)           | 90(4)           | -4(3)           | 5(3)            | 1(2)            |
| C(6)  | 83(4)           | 60(3)           | 85(5)           | -11(3)          | 13(3)           | -2(3)           |
| C(7)  | 73(3)           | 58(3)           | 73(4)           | 0(2)            | 19(3)           | -4(2)           |
| C(8)  | 51(2)           | 49(2)           | 67(3)           | 6(2)            | 12(2)           | 1(2)            |
| C(9)  | 50(2)           | 42(2)           | 63(3)           | 9(2)            | 10(2)           | 1(2)            |
| C(10) | 53(2)           | 53(3)           | 75(3)           | 10(2)           | 20(2)           | -3(2)           |
| C(11) | 55(2)           | 43(2)           | 63(3)           | 6(2)            | 12(2)           | -7(2)           |
| C(12) | 77(3)           | 59(3)           | 56(3)           | -4(2)           | 15(2)           | -14(2)          |
| C(13) | 54(2)           | 64(3)           | 59(3)           | 10(2)           | 10(2)           | -1(2)           |
| C(14) | 100(5)          | 107(5)          | 55(4)           | 10(3)           | 15(3)           | -12(4)          |
| C(15) | 225(15)         | 233(17)         | 73(6)           | 6(8)            | 14(7)           | -97(12)         |
| C(16) | 61(2)           | 51(2)           | 62(3)           | 5(2)            | 12(2)           | -11(2)          |
| C(17) | 92(4)           | 99(5)           | 74(4)           | 21(4)           | 28(3)           | -27(4)          |
| C(18) | 47(2)           | 48(2)           | 58(3)           | 10(2)           | 9(2)            | -1(2)           |
| C(19) | 48(2)           | 43(2)           | 55(3)           | 5(2)            | 4(2)            | -5(2)           |
| C(20) | 62(3)           | 44(2)           | 67(3)           | 7(2)            | 10(2)           | -2(2)           |
| C(21) | 87(4)           | 46(3)           | 91(5)           | 8(3)            | 11(3)           | -7(2)           |
| C(22) | 91(4)           | 47(3)           | 94(5)           | -6(3)           | 10(3)           | -2(3)           |
| C(23) | 87(4)           | 70(4)           | 72(4)           | -13(3)          | 14(3)           | -5(3)           |

| C(24) | 76(3)  | 62(3)  | 68(4) | 0(2)  | 15(3) | -7(3)  |
|-------|--------|--------|-------|-------|-------|--------|
| C(25) | 52(2)  | 46(2)  | 68(3) | 4(2)  | 7(2)  | -8(2)  |
| C(26) | 56(2)  | 45(2)  | 55(3) | 7(2)  | 4(2)  | -4(2)  |
| C(27) | 63(2)  | 50(2)  | 57(3) | 7(2)  | 6(2)  | -12(2) |
| C(28) | 51(2)  | 45(2)  | 55(3) | 8(2)  | 6(2)  | -4(2)  |
| C(29) | 55(2)  | 47(2)  | 57(3) | 4(2)  | 10(2) | -3(2)  |
| C(30) | 53(2)  | 51(2)  | 59(3) | 6(2)  | 10(2) | -3(2)  |
| C(31) | 93(4)  | 84(4)  | 60(4) | 11(3) | 24(3) | -8(3)  |
| C(32) | 158(8) | 106(6) | 65(5) | -2(4) | 19(5) | -15(5) |
| C(33) | 57(2)  | 54(3)  | 58(3) | 7(2)  | 9(2)  | -14(2) |
| C(34) | 114(5) | 104(6) | 87(5) | 31(4) | 35(4) | -41(4) |
| N(1)  | 62(2)  | 45(2)  | 70(3) | 12(2) | 15(2) | -9(2)  |
| N(2)  | 117(4) | 46(2)  | 73(3) | -3(2) | 29(3) | -30(2) |
| N(3)  | 68(2)  | 43(2)  | 70(3) | 12(2) | 11(2) | -8(2)  |
| N(4)  | 76(2)  | 44(2)  | 59(3) | 3(2)  | 15(2) | -12(2) |
| O(1)  | 86(3)  | 64(2)  | 72(3) | 18(2) | 24(2) | -12(2) |
| O(2)  | 93(3)  | 80(3)  | 56(2) | 3(2)  | 20(2) | -21(2) |
| O(3)  | 115(3) | 67(3)  | 74(3) | -2(2) | 25(2) | -42(2) |
| O(4)  | 76(2)  | 65(2)  | 63(2) | 12(2) | 14(2) | -21(2) |
| O(5)  | 91(3)  | 57(2)  | 76(3) | 12(2) | 27(2) | -14(2) |
| O(6)  | 84(2)  | 64(2)  | 62(2) | 8(2)  | 22(2) | -8(2)  |
| O(7)  | 117(4) | 57(2)  | 81(3) | 0(2)  | 30(3) | -32(2) |
| O(8)  | 80(2)  | 69(2)  | 69(3) | 11(2) | 27(2) | -17(2) |

Table 5. Hydrogen coordinates ( x 10<sup>4</sup>) and isotropic displacement parameters (Å  $^2$ x 10  $^3$ ) for cu\_140110\_0m.

|      | X     | у    | Z    | U(eq) |
|------|-------|------|------|-------|
|      |       |      |      |       |
| H(4) | 11768 | 6013 | 4281 | 84    |
| H(5) | 11422 | 6868 | 6121 | 90    |
| H(6) | 9897  | 5276 | 7228 | 93    |
| H(7) | 8631  | 2799 | 6500 | 82    |

| H(10A) | 6641  | 113   | 4214  | 72  |
|--------|-------|-------|-------|-----|
| H(10B) | 7803  | 190   | 5398  | 72  |
| H(11)  | 9478  | -1553 | 4601  | 65  |
| H(12)  | 8568  | -1618 | 1472  | 79  |
| H(14A) | 9457  | 1364  | -983  | 107 |
| H(14B) | 11117 | 544   | -806  | 107 |
| H(15A) | 7966  | -722  | -1855 | 282 |
| H(15B) | 9376  | -1762 | -1461 | 282 |
| H(15C) | 9686  | -578  | -2380 | 282 |
| H(17A) | 6219  | -4656 | 6135  | 134 |
| H(17B) | 4746  | -3621 | 5905  | 134 |
| H(17C) | 5960  | -3365 | 7078  | 134 |
| H(21)  | 2398  | -4772 | 1323  | 91  |
| H(22)  | 2538  | -5543 | -555  | 95  |
| H(23)  | 3429  | -3783 | -1803 | 94  |
| H(24)  | 4155  | -1152 | -1174 | 84  |
| H(27A) | 3557  | 2203  | 558   | 70  |
| H(27B) | 4958  | 1458  | -39   | 70  |
| H(28)  | 6827  | 2028  | 1748  | 61  |
| H(29)  | 4544  | 3079  | 3998  | 64  |
| H(31A) | 3619  | 130   | 6466  | 95  |
| H(31B) | 1886  | 822   | 6205  | 95  |
| H(32A) | 3262  | 3265  | 6952  | 169 |
| H(32B) | 4956  | 2535  | 7249  | 169 |
| H(32C) | 3379  | 2062  | 7880  | 169 |
| H(34A) | 8954  | 5300  | -221  | 155 |
| H(34B) | 7179  | 5795  | -680  | 155 |
| H(34C) | 7978  | 4563  | -1414 | 155 |
| H(1)   | 10923 | 3428  | 2710  | 71  |
| H(2)   | 7752  | -2831 | 2786  | 97  |
| H(3)   | 2991  | -2154 | 2876  | 73  |
| H(4A)  | 5512  | 4280  | 2665  | 73  |

### IX. X-ray crystal structure of 7b



# **ORTEP diagram of compound 7b.** Atomic displacement ellipsoids are drawn at the 50% probability level

CCDC no. of 7b: 1028024

| Table 1. Crystal of | data and structure | refinement for 7b. |
|---------------------|--------------------|--------------------|
|---------------------|--------------------|--------------------|

| Identification code | cu_140906lt_0m   |
|---------------------|------------------|
| Empirical formula   | C23 H16 C1 N3 O4 |
| Formula weight      | 433.84           |
| Temperature         | 100(2) K         |
| Wavelength          | 1.54178 Å        |
| Crystal system      | Monoclinic       |
| Space group         | P 21/c           |

| Unit cell dimensions                     | $a = 6.6540(3) \text{ Å} \qquad \alpha = 90^{\circ}.$        |
|------------------------------------------|--------------------------------------------------------------|
|                                          | $b = 12.6487(7) \text{ Å} \qquad \beta = 97.152(3)^{\circ}.$ |
|                                          | $c = 23.3926(13) \text{ Å}  \gamma = 90^{\circ}.$            |
| Volume                                   | 1953.51(18) Å <sup>3</sup>                                   |
| Ζ                                        | 4                                                            |
| Density (calculated)                     | 1.475 Mg/m <sup>3</sup>                                      |
| Absorption coefficient                   | 2.058 mm <sup>-1</sup>                                       |
| F(000)                                   | 896                                                          |
| Crystal size                             | 0.30 x 0.01 x 0.01 mm <sup>3</sup>                           |
| Theta range for data collection          | 3.809 to 66.826°.                                            |
| Index ranges                             | -7<=h<=4, -13<=k<=15, -27<=l<=27                             |
| Reflections collected                    | 12712                                                        |
| Independent reflections                  | 3385 [R(int) = 0.0726]                                       |
| Completeness to theta = $67.679^{\circ}$ | 96.2 %                                                       |
| Absorption correction                    | Semi-empirical from equivalents                              |
| Max. and min. transmission               | 0.9492 and 0.4939                                            |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>                  |
| Data / restraints / parameters           | 3385 / 0 / 281                                               |
| Goodness-of-fit on F <sup>2</sup>        | 1.132                                                        |
| Final R indices [I>2sigma(I)]            | R1 = 0.0852, $wR2 = 0.2415$                                  |
| R indices (all data)                     | R1 = 0.1359, $wR2 = 0.2862$                                  |
| Extinction coefficient                   | n/a                                                          |
| Largest diff. peak and hole              | 0.579 and -0.415 e.Å <sup>-3</sup>                           |

Table 2. Atomic coordinates ( x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å  $^{2}x 10^{3}$ ) for CU\_140906LT\_0M. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|       | Х       | у        | Z        | U(eq) |
|-------|---------|----------|----------|-------|
| Cl(1) | 1805(3) | -4503(2) | 10614(1) | 95(1) |
| O(1)  | 2237(4) | 1255(3)  | 6995(1)  | 54(1) |
| O(2)  | 7333(5) | -581(3)  | 9822(2)  | 76(1) |
| O(3)  | 4614(5) | 2442(3)  | 6855(2)  | 56(1) |
| O(4)  | 1963(4) | -1036(3) | 8426(1)  | 54(1) |

| N(1)  | 4702(6)  | 93(4)    | 8484(2)  | 57(1) |
|-------|----------|----------|----------|-------|
| N(2)  | 4454(6)  | -1025(3) | 9210(2)  | 53(1) |
| N(3)  | 7940(6)  | 2591(3)  | 7627(2)  | 53(1) |
| C(1)  | -972(7)  | 1051(4)  | 6451(2)  | 55(1) |
| C(2)  | 968(6)   | 1676(4)  | 6498(2)  | 53(1) |
| C(3)  | 4037(7)  | 1741(4)  | 7143(2)  | 47(1) |
| C(4)  | 5136(6)  | 1312(4)  | 7688(2)  | 47(1) |
| C(5)  | 4160(7)  | 574(4)   | 7958(2)  | 50(1) |
| C(6)  | 3505(7)  | -694(4)  | 8673(2)  | 50(1) |
| C(7)  | 3752(7)  | -1874(4) | 9533(2)  | 49(1) |
| C(8)  | 5045(7)  | -2713(4) | 9682(2)  | 53(1) |
| C(9)  | 4464(8)  | -3529(4) | 10013(2) | 60(1) |
| C(10) | 2528(8)  | -3485(5) | 10179(2) | 66(2) |
| C(11) | 6196(8)  | -447(5)  | 9385(3)  | 72(2) |
| C(12) | 6317(9)  | 412(6)   | 8941(3)  | 91(2) |
| C(13) | 7127(6)  | 1756(4)  | 7900(2)  | 48(1) |
| C(14) | 9819(7)  | 2840(4)  | 7904(2)  | 50(1) |
| C(15) | 10174(7) | 2157(4)  | 8379(2)  | 52(1) |
| C(16) | 8454(7)  | 1468(5)  | 8368(2)  | 57(1) |
| C(17) | 8276(9)  | 567(7)   | 8774(3)  | 98(3) |
| C(18) | 12008(7) | 2263(5)  | 8751(2)  | 57(1) |
| C(19) | 13405(7) | 3001(4)  | 8616(2)  | 54(1) |
| C(20) | 13033(7) | 3638(4)  | 8132(2)  | 56(1) |
| C(21) | 11229(7) | 3583(4)  | 7776(2)  | 56(1) |
| C(22) | 1821(7)  | -1845(5) | 9703(2)  | 59(1) |
| C(23) | 1210(8)  | -2667(5) | 10029(2) | 64(2) |

| O(1)-C(3)   | 1.352(6) |
|-------------|----------|
| O(1)-C(2)   | 1.451(5) |
| O(2)-C(11)  | 1.205(6) |
| O(3)-C(3)   | 1.206(6) |
| O(4)-C(6)   | 1.193(6) |
| N(1)-C(5)   | 1.380(6) |
| N(1)-C(6)   | 1.382(7) |
| N(1)-C(12)  | 1.475(6) |
| N(2)-C(11)  | 1.389(6) |
| N(2)-C(6)   | 1.398(6) |
| N(2)-C(7)   | 1.426(7) |
| N(3)-C(14)  | 1.372(6) |
| N(3)-C(13)  | 1.379(6) |
| N(3)-H(5)   | 0.8800   |
| C(1)-C(2)   | 1.506(7) |
| C(1)-H(1)   | 0.9800   |
| C(1)-H(13)  | 0.9800   |
| C(1)-H(14)  | 0.9800   |
| C(2)-H(11)  | 0.9900   |
| C(2)-H(12)  | 0.9900   |
| C(3)-C(4)   | 1.490(7) |
| C(4)-C(5)   | 1.339(7) |
| C(4)-C(13)  | 1.467(6) |
| C(5)-H(4)   | 0.9500   |
| C(7)-C(8)   | 1.383(7) |
| C(7)-C(22)  | 1.391(6) |
| C(8)-C(9)   | 1.374(7) |
| C(8)-H(2)   | 0.9500   |
| C(9)-C(10)  | 1.392(7) |
| C(9)-H(3)   | 0.9500   |
| C(10)-C(23) | 1.373(8) |
| C(11)-C(12) | 1.511(8) |
| C(12)-C(17) | 1.421(9) |

Table 3. Bond lengths [Å] and angles [°] for CU\_140906LT\_0M.

| C(13)-C(16)      | 1.369(6) |
|------------------|----------|
| C(14)-C(21)      | 1.387(7) |
| C(14)-C(15)      | 1.404(7) |
| C(15)-C(18)      | 1.413(6) |
| C(15)-C(16)      | 1.436(7) |
| C(16)-C(17)      | 1.497(8) |
| C(17)-H(6)       | 0.9500   |
| C(18)-C(19)      | 1.381(7) |
| C(18)-H(10)      | 0.9500   |
| C(19)-C(20)      | 1.386(8) |
| C(19)-H(9)       | 0.9500   |
| C(20)-C(21)      | 1.374(7) |
| C(20)-H(8)       | 0.9500   |
| C(21)-H(7)       | 0.9500   |
| C(22)-C(23)      | 1.381(8) |
| C(22)-H(16)      | 0.9500   |
| C(23)-H(15)      | 0.9500   |
| C(3)-O(1)-C(2)   | 116.6(4) |
| C(5)-N(1)-C(6)   | 120.4(4) |
| C(5)-N(1)-C(12)  | 127.8(4) |
| C(6)-N(1)-C(12)  | 111.2(4) |
| C(11)-N(2)-C(6)  | 112.0(4) |
| C(11)-N(2)-C(7)  | 123.8(4) |
| C(6)-N(2)-C(7)   | 124.2(4) |
| C(14)-N(3)-C(13) | 110.1(4) |
| C(14)-N(3)-H(5)  | 124.9    |
| C(13)-N(3)-H(5)  | 124.9    |
| C(2)-C(1)-H(1)   | 109.5    |
| C(2)-C(1)-H(13)  | 109.5    |
| H(1)-C(1)-H(13)  | 109.5    |
| C(2)-C(1)-H(14)  | 109.5    |
| H(1)-C(1)-H(14)  | 109.5    |
| H(13)-C(1)-H(14) | 109.5    |

| O(1)-C(2)-C(1)    | 106.0(4) |
|-------------------|----------|
| O(1)-C(2)-H(11)   | 110.5    |
| C(1)-C(2)-H(11)   | 110.5    |
| O(1)-C(2)-H(12)   | 110.5    |
| C(1)-C(2)-H(12)   | 110.5    |
| H(11)-C(2)-H(12)  | 108.7    |
| O(3)-C(3)-O(1)    | 121.6(4) |
| O(3)-C(3)-C(4)    | 126.1(4) |
| O(1)-C(3)-C(4)    | 112.2(4) |
| C(5)-C(4)-C(13)   | 125.3(4) |
| C(5)-C(4)-C(3)    | 116.2(4) |
| C(13)-C(4)-C(3)   | 118.4(4) |
| C(4)-C(5)-N(1)    | 129.7(4) |
| C(4)-C(5)-H(4)    | 115.1    |
| N(1)-C(5)-H(4)    | 115.1    |
| O(4)-C(6)-N(1)    | 127.0(5) |
| O(4)-C(6)-N(2)    | 126.2(5) |
| N(1)-C(6)-N(2)    | 106.8(4) |
| C(8)-C(7)-C(22)   | 121.1(5) |
| C(8)-C(7)-N(2)    | 118.5(4) |
| C(22)-C(7)-N(2)   | 120.4(5) |
| C(9)-C(8)-C(7)    | 120.5(5) |
| C(9)-C(8)-H(2)    | 119.7    |
| C(7)-C(8)-H(2)    | 119.7    |
| C(8)-C(9)-C(10)   | 117.5(5) |
| C(8)-C(9)-H(3)    | 121.2    |
| C(10)-C(9)-H(3)   | 121.2    |
| C(23)-C(10)-C(9)  | 122.8(5) |
| C(23)-C(10)-Cl(1) | 119.4(5) |
| C(9)-C(10)-Cl(1)  | 117.7(5) |
| O(2)-C(11)-N(2)   | 126.1(5) |
| O(2)-C(11)-C(12)  | 127.0(5) |
| N(2)-C(11)-C(12)  | 106.8(4) |
| C(17)-C(12)-N(1)  | 116.7(6) |
| C(17)-C(12)-C(11) | 114.7(6) |

| N(1)-C(12)-C(11)  | 101.9(4) |
|-------------------|----------|
| C(16)-C(13)-N(3)  | 108.9(4) |
| C(16)-C(13)-C(4)  | 129.3(5) |
| N(3)-C(13)-C(4)   | 121.8(4) |
| N(3)-C(14)-C(21)  | 130.9(5) |
| N(3)-C(14)-C(15)  | 106.7(4) |
| C(21)-C(14)-C(15) | 122.4(4) |
| C(14)-C(15)-C(18) | 118.4(5) |
| C(14)-C(15)-C(16) | 107.7(4) |
| C(18)-C(15)-C(16) | 133.9(5) |
| C(13)-C(16)-C(15) | 106.6(5) |
| C(13)-C(16)-C(17) | 128.0(5) |
| C(15)-C(16)-C(17) | 125.2(4) |
| C(12)-C(17)-C(16) | 115.3(6) |
| C(12)-C(17)-H(6)  | 122.3    |
| C(16)-C(17)-H(6)  | 122.3    |
| C(19)-C(18)-C(15) | 118.6(5) |
| C(19)-C(18)-H(10) | 120.7    |
| C(15)-C(18)-H(10) | 120.7    |
| C(18)-C(19)-C(20) | 121.5(5) |
| C(18)-C(19)-H(9)  | 119.3    |
| C(20)-C(19)-H(9)  | 119.3    |
| C(21)-C(20)-C(19) | 121.3(5) |
| C(21)-C(20)-H(8)  | 119.4    |
| C(19)-C(20)-H(8)  | 119.4    |
| C(20)-C(21)-C(14) | 117.8(5) |
| C(20)-C(21)-H(7)  | 121.1    |
| C(14)-C(21)-H(7)  | 121.1    |
| C(23)-C(22)-C(7)  | 118.9(5) |
| C(23)-C(22)-H(16) | 120.6    |
| C(7)-C(22)-H(16)  | 120.6    |
| C(10)-C(23)-C(22) | 119.1(5) |
| C(10)-C(23)-H(15) | 120.5    |
| C(22)-C(23)-H(15) | 120.5    |

Symmetry transformations used to generate equivalent atoms: Table 4. Anisotropic displacement parameters (Å <sup>2</sup>x 10<sup>3</sup>) for CU\_140906LT\_0M. The anisotropic displacement factor exponent takes the form: -2π<sup>2</sup>[ h<sup>2</sup> a\*<sup>2</sup>U<sup>11</sup> + ... + 2 h k a\* b\* U<sup>12</sup> ]

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | $U^{12}$ |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|
| Cl(1) | 86(1)           | 108(1)          | 89(1)           | 25(1)           | -3(1)           | -41(1)   |
| O(1)  | 26(2)           | 73(2)           | 58(2)           | 7(2)            | -8(1)           | 1(2)     |
| O(2)  | 44(2)           | 99(3)           | 76(3)           | 27(2)           | -24(2)          | -21(2)   |
| O(3)  | 28(2)           | 81(2)           | 57(2)           | 8(2)            | -4(1)           | 2(2)     |
| O(4)  | 24(2)           | 76(2)           | 59(2)           | -1(2)           | -12(1)          | -3(2)    |
| N(1)  | 37(2)           | 70(3)           | 58(3)           | 15(2)           | -17(2)          | -9(2)    |
| N(2)  | 29(2)           | 69(3)           | 56(2)           | 4(2)            | -12(2)          | -6(2)    |
| N(3)  | 32(2)           | 69(3)           | 55(3)           | 4(2)            | -8(2)           | 1(2)     |
| C(1)  | 30(2)           | 73(3)           | 60(3)           | 7(3)            | -5(2)           | 3(2)     |
| C(2)  | 24(2)           | 74(3)           | 58(3)           | 7(3)            | -8(2)           | -3(2)    |
| C(3)  | 27(2)           | 59(3)           | 54(3)           | -1(2)           | -2(2)           | 3(2)     |
| C(4)  | 24(2)           | 62(3)           | 54(3)           | -1(2)           | -4(2)           | 0(2)     |
| C(5)  | 32(2)           | 58(3)           | 56(3)           | -3(2)           | -11(2)          | 1(2)     |
| C(6)  | 34(2)           | 64(3)           | 51(3)           | 0(2)            | -2(2)           | 7(2)     |
| C(7)  | 26(2)           | 66(3)           | 51(3)           | -2(2)           | -10(2)          | -4(2)    |
| C(8)  | 32(2)           | 65(3)           | 59(3)           | -1(3)           | -7(2)           | -1(2)    |
| C(9)  | 40(3)           | 66(3)           | 66(3)           | 2(3)            | -15(2)          | -3(3)    |
| C(10) | 52(3)           | 88(4)           | 54(3)           | 5(3)            | -8(2)           | -20(3)   |
| C(11) | 35(3)           | 89(4)           | 82(4)           | 24(3)           | -27(3)          | -21(3)   |
| C(12) | 53(3)           | 132(6)          | 78(4)           | 41(4)           | -34(3)          | -42(4)   |
| C(13) | 27(2)           | 59(3)           | 55(3)           | -1(2)           | 1(2)            | 3(2)     |
| C(14) | 28(2)           | 66(3)           | 54(3)           | -8(2)           | 0(2)            | 1(2)     |
| C(15) | 28(2)           | 75(3)           | 54(3)           | 0(3)            | 1(2)            | 3(2)     |
| C(16) | 26(2)           | 82(4)           | 61(3)           | 7(3)            | -4(2)           | -7(3)    |
| C(17) | 45(3)           | 151(7)          | 89(5)           | 59(5)           | -24(3)          | -29(4)   |
| C(18) | 32(2)           | 87(4)           | 52(3)           | 7(3)            | 0(2)            | 2(3)     |
| C(19) | 31(2)           | 73(3)           | 56(3)           | -4(3)           | 0(2)            | -4(2)    |
| C(20) | 38(3)           | 65(3)           | 62(3)           | -5(3)           | 0(2)            | -1(2)    |

| C(21) | 33(2) | 72(3) | 60(3) | 6(3)  | -2(2) | -4(3) |
|-------|-------|-------|-------|-------|-------|-------|
| C(22) | 29(2) | 82(4) | 63(3) | -7(3) | -4(2) | 0(3)  |
| C(23) | 35(3) | 88(4) | 67(4) | 4(3)  | 1(2)  | -9(3) |

Table 5. Hydrogen coordinates (  $x~10^4$  ) and isotropic displacement parameters (Å  $^2x~10^{-3}$  ) for CU\_140906LT\_0M.

|       | Х     | у     | Z     | U(eq) |
|-------|-------|-------|-------|-------|
| H(5)  | 7341  | 2916  | 7319  | 64    |
| H(1)  | -686  | 307   | 6376  | 83    |
| H(13) | -1924 | 1331  | 6133  | 83    |
| H(14) | -1569 | 1107  | 6812  | 83    |
| H(11) | 1636  | 1592  | 6146  | 64    |
| H(12) | 696   | 2437  | 6553  | 64    |
| H(4)  | 2905  | 347   | 7757  | 60    |
| H(2)  | 6345  | -2726 | 9554  | 64    |
| H(3)  | 5352  | -4101 | 10125 | 71    |
| H(6)  | 9395  | 130   | 8910  | 117   |
| H(10) | 12274 | 1836  | 9085  | 69    |
| H(9)  | 14649 | 3073  | 8860  | 64    |
| H(8)  | 14044 | 4121  | 8045  | 67    |
| H(7)  | 10958 | 4040  | 7453  | 67    |
| H(16) | 938   | -1268 | 9596  | 71    |
| H(15) | -103  | -2667 | 10148 | 77    |

### X. X-ray crystal structure of 7r



## ORTEP diagram of compound 7r. Atomic displacement ellipsoids are

drawn at the 50% probability level

### CCDC no. of **7r**: 1027211

| Identification code | 140905LT_a      |
|---------------------|-----------------|
| Empirical formula   | C25 H23 N3 O3 S |
| Formula weight      | 445.52          |
| Temperature         | 100(2) K        |
| Wavelength          | 0.71073 Å       |
| Crystal system      | Monoclinic      |
| Space group         | P 21/c          |

| Unit cell dimensions                     | $a = 12.6842(5) \text{ Å} \qquad \alpha = 90^{\circ}.$       |  |  |
|------------------------------------------|--------------------------------------------------------------|--|--|
|                                          | $b = 20.3035(8) \text{ Å} \qquad \beta = 99.772(2)^{\circ}.$ |  |  |
|                                          | $c = 8.2806(3) \text{ Å} \qquad \gamma = 90^{\circ}.$        |  |  |
| Volume                                   | 2101.59(14) Å <sup>3</sup>                                   |  |  |
| Z                                        | 4                                                            |  |  |
| Density (calculated)                     | 1.408 Mg/m <sup>3</sup>                                      |  |  |
| Absorption coefficient                   | $0.188 \text{ mm}^{-1}$                                      |  |  |
| F(000)                                   | 936                                                          |  |  |
| Crystal size                             | 0.30 x 0.07 x 0.07 mm <sup>3</sup>                           |  |  |
| Theta range for data collection          | 1.629 to 26.363°.                                            |  |  |
| Index ranges                             | -15<=h<=15, -25<=k<=25, -10<=l<=5                            |  |  |
| Reflections collected                    | 15564                                                        |  |  |
| Independent reflections                  | 4291 [R(int) = 0.0368]                                       |  |  |
| Completeness to theta = $25.242^{\circ}$ | 99.8 %                                                       |  |  |
| Absorption correction                    | Semi-empirical from equivalents                              |  |  |
| Max. and min. transmission               | 0.9485 and 0.8830                                            |  |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>                  |  |  |
| Data / restraints / parameters           | 4291 / 0 / 290                                               |  |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.157                                                        |  |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0397, wR2 = 0.1212                                    |  |  |
| R indices (all data)                     | R1 = 0.0550, wR2 = 0.1514                                    |  |  |
| Extinction coefficient                   | n/a                                                          |  |  |
| Largest diff. peak and hole              | 0.530 and -0.433 e.Å <sup>-3</sup>                           |  |  |

|       | Х       | у       | Z        | U(eq) |
|-------|---------|---------|----------|-------|
| C(1)  | 2846(2) | 4271(1) | 3163(2)  | 15(1) |
| C(2)  | 3707(2) | 4270(1) | 790(2)   | 13(1) |
| C(3)  | 3949(1) | 4510(1) | -626(2)  | 13(1) |
| C(4)  | 3453(2) | 5090(1) | -1509(2) | 12(1) |
| C(5)  | 1224(2) | 4753(1) | 2164(2)  | 16(1) |
| C(6)  | 3192(2) | 5840(1) | -3535(2) | 13(1) |
| C(7)  | 3225(2) | 6204(1) | -4970(2) | 16(1) |
| C(8)  | 2530(2) | 6729(1) | -5269(2) | 17(1) |
| C(9)  | 1832(2) | 6898(1) | -4186(2) | 19(1) |
| C(10) | 1800(2) | 6532(1) | -2784(2) | 19(1) |
| C(11) | 2486(2) | 5986(1) | -2448(2) | 15(1) |
| C(12) | 2650(2) | 5505(1) | -1168(2) | 15(1) |
| C(13) | 2031(2) | 5475(1) | 209(2)   | 16(1) |
| C(14) | 1880(2) | 4776(1) | 790(2)   | 16(1) |
| C(15) | 1550(2) | 4365(1) | 5108(2)  | 17(1) |
| C(16) | 1128(2) | 3663(1) | 5268(2)  | 21(1) |
| C(17) | 1144(2) | 3468(1) | 7038(2)  | 17(1) |
| C(18) | 227(2)  | 3505(1) | 7745(2)  | 21(1) |
| C(19) | 258(2)  | 3321(1) | 9371(3)  | 27(1) |
| C(20) | 1203(2) | 3099(1) | 10301(2) | 28(1) |
| C(21) | 2117(2) | 3058(1) | 9605(2)  | 27(1) |
| C(22) | 2090(2) | 3248(1) | 7988(2)  | 21(1) |
| C(23) | 4822(2) | 4159(1) | -1266(2) | 13(1) |
| C(24) | 5832(2) | 3155(1) | -1116(2) | 18(1) |
| C(25) | 5297(2) | 2639(1) | -2284(2) | 25(1) |
| N(1)  | 2886(1) | 4464(1) | 1575(2)  | 14(1) |
| N(2)  | 1869(1) | 4468(1) | 3512(2)  | 16(1) |
| N(3)  | 3774(1) | 5297(1) | -2941(2) | 14(1) |

Table 2. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å  $^2x \ 10^3$ ) for 140905lt\_A. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| O(1) | 320(1)  | 4950(1) | 2132(2)  | 22(1) |
|------|---------|---------|----------|-------|
| O(2) | 5306(1) | 4373(1) | -2301(2) | 15(1) |
| O(3) | 5018(1) | 3564(1) | -573(2)  | 19(1) |
| S(1) | 3787(1) | 3887(1) | 4412(1)  | 21(1) |

| C(1)-N(2)    | 1.378(2)   |
|--------------|------------|
| C(1)-N(1)    | 1.381(2)   |
| C(1)-S(1)    | 1.6391(19) |
| C(2)-C(3)    | 1.352(3)   |
| C(2)-N(1)    | 1.376(2)   |
| C(2)-H(2)    | 0.9500     |
| C(3)-C(4)    | 1.470(2)   |
| C(3)-C(23)   | 1.489(3)   |
| C(4)-N(3)    | 1.383(2)   |
| C(4)-C(12)   | 1.388(3)   |
| C(5)-O(1)    | 1.210(2)   |
| C(5)-N(2)    | 1.393(2)   |
| C(5)-C(14)   | 1.521(3)   |
| C(6)-N(3)    | 1.370(2)   |
| C(6)-C(11)   | 1.405(3)   |
| C(6)-C(7)    | 1.406(3)   |
| C(7)-C(8)    | 1.379(3)   |
| C(7)-H(7)    | 0.9500     |
| C(8)-C(9)    | 1.405(3)   |
| C(8)-H(8)    | 0.9500     |
| C(9)-C(10)   | 1.385(3)   |
| C(9)-H(9)    | 0.9500     |
| C(10)-C(11)  | 1.408(3)   |
| C(10)-H(10)  | 0.9500     |
| C(11)-C(12)  | 1.429(3)   |
| C(12)-C(13)  | 1.492(3)   |
| C(13)-C(14)  | 1.521(3)   |
| C(13)-H(13A) | 0.9900     |
| C(13)-H(13B) | 0.9900     |
| C(14)-N(1)   | 1.473(2)   |
| C(14)-H(14)  | 1.0000     |
| C(15)-N(2)   | 1.462(2)   |

Table 3. Bond lengths [Å] and angles [°] for 140905lt\_A.

| C(15)-C(16)    | 1.535(3)   |
|----------------|------------|
| C(15)-H(15A)   | 0.9900     |
| C(15)-H(15B)   | 0.9900     |
| C(16)-C(17)    | 1.516(3)   |
| C(16)-H(16A)   | 0.9900     |
| C(16)-H(16B)   | 0.9900     |
| C(17)-C(18)    | 1.389(3)   |
| C(17)-C(22)    | 1.392(3)   |
| C(18)-C(19)    | 1.392(3)   |
| C(18)-H(18)    | 0.9500     |
| C(19)-C(20)    | 1.386(3)   |
| C(19)-H(19)    | 0.9500     |
| C(20)-C(21)    | 1.382(3)   |
| C(20)-H(20)    | 0.9500     |
| C(21)-C(22)    | 1.388(3)   |
| C(21)-H(21)    | 0.9500     |
| C(22)-H(22)    | 0.9500     |
| C(23)-O(2)     | 1.216(2)   |
| C(23)-O(3)     | 1.342(2)   |
| C(24)-O(3)     | 1.454(2)   |
| C(24)-C(25)    | 1.507(3)   |
| C(24)-H(24A)   | 0.9900     |
| C(24)-H(24B)   | 0.9900     |
| C(25)-H(25A)   | 0.9800     |
| C(25)-H(25B)   | 0.9800     |
| C(25)-H(25C)   | 0.9800     |
| N(3)-H(3)      | 0.8800     |
| N(2)-C(1)-N(1) | 107.29(15) |
| N(2)-C(1)-S(1) | 126.18(14) |
| N(1)-C(1)-S(1) | 126.53(15) |
| C(3)-C(2)-N(1) | 127.50(17) |
| C(3)-C(2)-H(2) | 116.2      |
| N(1)-C(2)-H(2) | 116.2      |

| C(2)-C(3)-C(4)                           | 125.37(17)     |
|------------------------------------------|----------------|
| C(2)-C(3)-C(23)                          | 115.38(16)     |
| C(4)-C(3)-C(23)                          | 119.21(16)     |
| N(3)-C(4)-C(12)                          | 108.81(16)     |
| N(3)-C(4)-C(3)                           | 120.46(17)     |
| C(12)-C(4)-C(3)                          | 130.72(17)     |
| O(1)-C(5)-N(2)                           | 125.49(18)     |
| O(1)-C(5)-C(14)                          | 127.64(17)     |
| N(2)-C(5)-C(14)                          | 106.86(16)     |
| N(3)-C(6)-C(11)                          | 107.60(16)     |
| N(3)-C(6)-C(7)                           | 129.41(18)     |
| C(11)-C(6)-C(7)                          | 122.98(18)     |
| C(8)-C(7)-C(6)                           | 116.66(18)     |
| C(8)-C(7)-H(7)                           | 121.7          |
| C(6)-C(7)-H(7)                           | 121.7          |
| C(7)-C(8)-C(9)                           | 121.78(17)     |
| C(7)-C(8)-H(8)                           | 119.1          |
| C(9)-C(8)-H(8)                           | 119.1          |
| C(10)-C(9)-C(8)                          | 121.02(18)     |
| C(10)-C(9)-H(9)                          | 119.5          |
| C(8)-C(9)-H(9)                           | 119.5          |
| C(9)-C(10)-C(11)                         | 118.93(19)     |
| C(9)-C(10)-H(10)                         | 120.5          |
| C(11)-C(10)-H(10)                        | 120.5          |
| C(6)-C(11)-C(10)                         | 118.61(17)     |
| C(6)-C(11)-C(12)                         | 107.63(17)     |
| C(10)-C(11)-C(12)                        | 133.76(19)     |
| C(4)-C(12)-C(11)                         | 106.47(16)     |
| C(4)-C(12)-C(13)                         | 129.08(17)     |
| C(11)-C(12)-C(13)                        | 124.43(17)     |
| C(12)-C(13)-C(14)                        | 113.00(16)     |
|                                          |                |
| C(12)-C(13)-H(13A)                       | 109.0          |
| C(12)-C(13)-H(13A)<br>C(14)-C(13)-H(13A) | 109.0<br>109.0 |

| C(14)-C(13)-H(13B)  | 109.0      |
|---------------------|------------|
| H(13A)-C(13)-H(13B) | 107.8      |
| N(1)-C(14)-C(13)    | 113.26(16) |
| N(1)-C(14)-C(5)     | 101.52(14) |
| C(13)-C(14)-C(5)    | 112.27(16) |
| N(1)-C(14)-H(14)    | 109.8      |
| C(13)-C(14)-H(14)   | 109.8      |
| C(5)-C(14)-H(14)    | 109.8      |
| N(2)-C(15)-C(16)    | 111.36(15) |
| N(2)-C(15)-H(15A)   | 109.4      |
| C(16)-C(15)-H(15A)  | 109.4      |
| N(2)-C(15)-H(15B)   | 109.4      |
| C(16)-C(15)-H(15B)  | 109.4      |
| H(15A)-C(15)-H(15B) | 108.0      |
| C(17)-C(16)-C(15)   | 112.23(15) |
| С(17)-С(16)-Н(16А)  | 109.2      |
| C(15)-C(16)-H(16A)  | 109.2      |
| C(17)-C(16)-H(16B)  | 109.2      |
| C(15)-C(16)-H(16B)  | 109.2      |
| H(16A)-C(16)-H(16B) | 107.9      |
| C(18)-C(17)-C(22)   | 118.78(18) |
| C(18)-C(17)-C(16)   | 121.26(19) |
| C(22)-C(17)-C(16)   | 119.96(19) |
| C(17)-C(18)-C(19)   | 120.4(2)   |
| C(17)-C(18)-H(18)   | 119.8      |
| C(19)-C(18)-H(18)   | 119.8      |
| C(20)-C(19)-C(18)   | 120.3(2)   |
| C(20)-C(19)-H(19)   | 119.9      |
| C(18)-C(19)-H(19)   | 119.9      |
| C(21)-C(20)-C(19)   | 119.72(19) |
| C(21)-C(20)-H(20)   | 120.1      |
| C(19)-C(20)-H(20)   | 120.1      |
| C(20)-C(21)-C(22)   | 120.0(2)   |
| C(20)-C(21)-H(21)   | 120.0      |

| C(22)-C(21)-H(21)   | 120.0      |
|---------------------|------------|
| C(21)-C(22)-C(17)   | 120.9(2)   |
| C(21)-C(22)-H(22)   | 119.6      |
| С(17)-С(22)-Н(22)   | 119.6      |
| O(2)-C(23)-O(3)     | 122.93(18) |
| O(2)-C(23)-C(3)     | 125.12(17) |
| O(3)-C(23)-C(3)     | 111.95(16) |
| O(3)-C(24)-C(25)    | 109.26(17) |
| O(3)-C(24)-H(24A)   | 109.8      |
| C(25)-C(24)-H(24A)  | 109.8      |
| O(3)-C(24)-H(24B)   | 109.8      |
| C(25)-C(24)-H(24B)  | 109.8      |
| H(24A)-C(24)-H(24B) | 108.3      |
| C(24)-C(25)-H(25A)  | 109.5      |
| C(24)-C(25)-H(25B)  | 109.5      |
| H(25A)-C(25)-H(25B) | 109.5      |
| C(24)-C(25)-H(25C)  | 109.5      |
| H(25A)-C(25)-H(25C) | 109.5      |
| H(25B)-C(25)-H(25C) | 109.5      |
| C(2)-N(1)-C(1)      | 121.51(16) |
| C(2)-N(1)-C(14)     | 125.61(15) |
| C(1)-N(1)-C(14)     | 111.91(15) |
| C(1)-N(2)-C(5)      | 112.31(15) |
| C(1)-N(2)-C(15)     | 123.02(16) |
| C(5)-N(2)-C(15)     | 124.64(17) |
| C(6)-N(3)-C(4)      | 109.49(16) |
| C(6)-N(3)-H(3)      | 125.3      |
| C(4)-N(3)-H(3)      | 125.3      |
| C(23)-O(3)-C(24)    | 118.12(15) |

Symmetry transformations used to generate equivalent atoms:

|       | $U^{11}$ | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C(1)  | 16(1)    | 14(1)           | 14(1)           | -2(1)           | 6(1)            | -2(1)           |
| C(2)  | 13(1)    | 13(1)           | 14(1)           | -3(1)           | 3(1)            | 2(1)            |
| C(3)  | 12(1)    | 12(1)           | 14(1)           | -3(1)           | 3(1)            | 0(1)            |
| C(4)  | 14(1)    | 13(1)           | 11(1)           | -2(1)           | 2(1)            | -3(1)           |
| C(5)  | 17(1)    | 14(1)           | 18(1)           | 1(1)            | 5(1)            | -1(1)           |
| C(6)  | 13(1)    | 13(1)           | 13(1)           | -1(1)           | 1(1)            | -1(1)           |
| C(7)  | 15(1)    | 20(1)           | 15(1)           | 0(1)            | 6(1)            | -2(1)           |
| C(8)  | 16(1)    | 19(1)           | 15(1)           | 4(1)            | 2(1)            | 0(1)            |
| C(9)  | 19(1)    | 18(1)           | 20(1)           | 4(1)            | 2(1)            | 4(1)            |
| C(10) | 16(1)    | 23(1)           | 18(1)           | 0(1)            | 6(1)            | 4(1)            |
| C(11) | 15(1)    | 16(1)           | 14(1)           | -1(1)           | 2(1)            | 0(1)            |
| C(12) | 15(1)    | 16(1)           | 14(1)           | -1(1)           | 3(1)            | 0(1)            |
| C(13) | 17(1)    | 17(1)           | 16(1)           | 2(1)            | 7(1)            | 3(1)            |
| C(14) | 14(1)    | 17(1)           | 16(1)           | -1(1)           | 3(1)            | 1(1)            |
| C(15) | 20(1)    | 19(1)           | 15(1)           | -1(1)           | 10(1)           | -1(1)           |
| C(16) | 24(1)    | 22(1)           | 17(1)           | -1(1)           | 6(1)            | -8(1)           |
| C(17) | 23(1)    | 12(1)           | 18(1)           | -1(1)           | 6(1)            | -6(1)           |
| C(18) | 24(1)    | 15(1)           | 24(1)           | -2(1)           | 9(1)            | -4(1)           |
| C(19) | 41(1)    | 15(1)           | 29(1)           | -3(1)           | 21(1)           | -5(1)           |
| C(20) | 56(2)    | 13(1)           | 17(1)           | 1(1)            | 10(1)           | -5(1)           |
| C(21) | 38(1)    | 15(1)           | 24(1)           | 0(1)            | -5(1)           | -4(1)           |
| C(22) | 22(1)    | 18(1)           | 24(1)           | -4(1)           | 6(1)            | -5(1)           |
| C(23) | 14(1)    | 14(1)           | 11(1)           | -2(1)           | 1(1)            | -1(1)           |
| C(24) | 20(1)    | 16(1)           | 20(1)           | 2(1)            | 10(1)           | 7(1)            |
| C(25) | 31(1)    | 22(1)           | 24(1)           | -3(1)           | 8(1)            | 6(1)            |
| N(1)  | 14(1)    | 14(1)           | 14(1)           | 2(1)            | 5(1)            | 2(1)            |
| N(2)  | 17(1)    | 17(1)           | 15(1)           | 0(1)            | 8(1)            | 1(1)            |
| N(3)  | 14(1)    | 16(1)           | 13(1)           | 1(1)            | 6(1)            | 2(1)            |
| O(1)  | 17(1)    | 27(1)           | 24(1)           | 5(1)            | 9(1)            | 4(1)            |
| O(2)  | 17(1)    | 17(1)           | 13(1)           | 0(1)            | 7(1)            | 2(1)            |

Table 4. Anisotropic displacement parameters (Å  ${}^{2}x 10^{3}$ ) for 140905lt\_A. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^{2}$ [  ${}^{h^{2}}a^{*2}U^{11} + ... + 2 h k a^{*}b^{*}U^{12}$ ]

| O(3) | 22(1) | 14(1) | 23(1) | 3(1) | 13(1) | 6(1) |  |
|------|-------|-------|-------|------|-------|------|--|
| S(1) | 18(1) | 31(1) | 15(1) | 4(1) | 3(1)  | 6(1) |  |

Table 5. Hydrogen coordinates (  $x\ 10^4$  ) and isotropic displacement parameters (Å  $^2x\ 10\ ^3$  )

for 140905lt\_A.

|        | X    | У    | Z     | U(eq) |
|--------|------|------|-------|-------|
| H(2)   | 4156 | 3929 | 1300  | 16    |
| H(7)   | 3702 | 6094 | -5697 | 20    |
| H(8)   | 2522 | 6984 | -6233 | 20    |
| H(9)   | 1375 | 7269 | -4419 | 23    |
| H(10)  | 1323 | 6648 | -2061 | 22    |
| H(13A) | 1320 | 5677 | -149  | 19    |
| H(13B) | 2408 | 5737 | 1140  | 19    |
| H(14)  | 1531 | 4500 | -151  | 19    |
| H(15A) | 986  | 4686 | 5252  | 21    |
| H(15B) | 2172 | 4443 | 5984  | 21    |
| H(16A) | 386  | 3634 | 4664  | 25    |
| H(16B) | 1572 | 3350 | 4759  | 25    |
| H(18)  | -423 | 3656 | 7115  | 25    |
| H(19)  | -372 | 3347 | 9846  | 32    |
| H(20)  | 1223 | 2975 | 11412 | 34    |
| H(21)  | 2765 | 2900 | 10234 | 32    |
| H(22)  | 2724 | 3227 | 7524  | 25    |
| H(24A) | 6274 | 2940 | -160  | 22    |
| H(24B) | 6307 | 3431 | -1670 | 22    |
| H(25A) | 4755 | 2408 | -1784 | 38    |
| H(25B) | 5833 | 2323 | -2525 | 38    |
| H(25C) | 4955 | 2851 | -3303 | 38    |
| H(3)   | 4274 | 5109 | -3400 | 16    |