Laurents et al.

Supporting Information for

DMSO Affects Aβ₁₋₄₀'s Conformation and Interactions with Aggregation Inhibitors as Revealed by NMR

Douglas V. Laurents, David Pantoja-Uceda, Laura C. López, José Alberto Carrodeguas, Miguel Mompeán, M^a Ángeles Jiménez, Javier Sancho

Detailed Experimental Procedures

Supporting Table 1: Summary of NMR Experiments.

Supporting Table 2: ¹H, ¹³C, ¹⁵N assignments of $A\beta_{1-40}$ in DMSO_{d6} at 30 °C.

Supporting Table 3: $A\beta_{1-40}$ Calculated Intrinsic Hydrogen/Deuterium Exchange.

Sup. Fig. 1 ¹H-¹⁵N Spectra of $A\beta_{1-40}$ in water/DMSO mixtures.

Sup. Fig. 2 Inter-residual correlations from the 3D HNCACB spectrum.

Sup. Fig. 3 Assigned ¹H-¹³C HSQC of A β_{1-40} .

Sup. Fig. 4 Comparison of chemical shift values of $A\beta_{1-40}$ (this work) and $A\beta_{1-28}$ (Sorimachi, K. & Craik D. J. (1994)) in DMSO.

Sup. Fig. 5 2D ¹H NOESY spectrum of $A\beta_{1-40}$ in DMSO_{d6}.

Sup. Fig. 6. ¹H-¹⁵N HSQC spectra of $A\beta_{1-40}$ with and with heteronuclear NOE.

Sup. Fig. 7 Comparison of ¹H-¹⁵N NOE ratio of $A\beta_{1-40}$ in water and DMSO_{d6}.

Sup. Fig. 8 H/D exchange of A β preincubated in DMSO.

Sup. Fig. 9 ThT Assay of $A\beta$ incubated in DMSO or aqueous solution.

Sup. Fig. 10 1D ¹H NMR spectra of A β and Inhibitor Compounds.

Sup. Fig. 11 2D ¹H-¹⁵N HSQC NMR spectra of A β alone and titrated with C1 in aqueous solution or DMSO_{d6}.

Sup. Fig. 12. 1 H- 15 N A β Chemical Shift Changes Induced by C2 (A), C3 (B) and C4 (C) in DMSO_{d6}

DETAILED EXPERIMENTAL PROCEDURES

NMR assignment: $A\beta_{1-40}$, ¹⁵N- $A\beta_{1-40}$ and ¹³C, ¹⁵N- $A\beta_{1-40}$ samples were purchased from rPeptide (Georgia, USA). Deuterated DMSO_{d6} (99% atom D), in ampules, was obtained from Sigma/Aldrich. The $^{13}\text{C}, ^{15}\text{N-A}\beta_{1\text{-}40}$ sample used for assignment was prepared at 100 μ M protein concentration by dissolving the lyophilized material in 220 μ l of DMSO_{d6}. The use of a 5mm diameter DMSO-matched Shigemi tube reduced the expense of ${}^{13}C$, ${}^{15}N-A\beta_1$. 40 and allowed us to avoid the presence of an air-solvent interface. All NMR experiments for assignment were performed on a Bruker AV spectrometer, operating at 800.1 MHz ⁽¹H), and equipped with a cryogenically cooled triple-resonance (¹H, ¹³C, ¹⁵N) TCI probe head to improve the signal/noise and pulsed z-field gradients. For sequential assignment, a suite of triple resonance NMR spectra were recorded: 3D HNCO, HNCA, HNCA-intra, HNCACB, CBCA(CO)NH, (H)CC(CO)NH and H(CCCO)NH. These were complemented with the acquisition of several experiments ¹H-¹⁵N HSQCs for amino acid type discrimination ^{1,2}. Furthermore, an alternative approach based on the collect of reduced dimensionality (4,2)D HN(COCA)NH experiment ³ was used to speed up the sequential assignment process. Additionally, to complete the assignment of the ${}^{13}C$, ${}^{15}N$ -A $\beta_{1.40}$ protein, 2D ¹H-¹H TOCSY, ¹H-¹H NOESY, ¹H-¹³C HSQC, 3D ¹H-¹⁵N NOESY-HSQC and ¹H-¹³C NOESY-HSQC spectra was recorded. The acquisition parameters of these spectra are given in Sup. Table 1. Spectra of ${}^{13}C$, ${}^{15}N$ -A β_{1-40} in neat DMSO_{d6} were recorded at 30 °C. In contrast, spectra of ¹³C, ¹⁵N-A_{β1-40} (100 µM) in 90%:10%::H₂O:D₂O containing 10 mM K₂HPO₄/KH₂PO₄ pH 7 or DMSO_{d6}/aqueous buffer mixtures were recorded at 5 °C.

Spectra were processed and transformed with TOPSPIN2.1 (Bruker Biospin) and NMRPipe ⁴. Spectra were assigned manually with the aid of the SPARKY program and the (4,2)D HN(COCA)N(H) experiment was analyzed using in-house programs. The assignment was confirmed using the automatic approach MARS ⁵.

Laurents et al.

Chemical shift referencing: The use of DSS as the internal chemical shift reference in samples containing A β is not recommended because A β binds DSS and their union could affect A β 's conformation and DSS's chemical shift ⁶. Instead, we used a value of 2.49 ppm for the residual ¹H signal of DMSO_{d6} for samples prepared in neat DMSO_{d6} ⁷. Based on this ¹H reference, the ¹³C and ¹⁵N chemical shifts could be referenced indirectly by multiplying by their gyromagnetic ratios with respect to ¹H ⁸. In the case of ¹³C, the values obtained were corroborated by checking the value (39.5 ppm) of the DMSO ¹³C signal. For samples containing a minor fraction of DMSO in aqueous solution, we found, using a blank containing ca. 10% DMSO, 10% D₂O, 80 % H₂O, 50 microM DSS and no A β , that the residual ¹H signal of DMSO_{d6} is 2.67 ppm at 5 °C. This value agrees reasonably well with the published value of 2.71 ppm obtained for traces of DMSO_{d6} in D₂O at 24 °C ⁷.

Chemical Shift Analysis: Prediction of secondary structure and backbone dynamics ⁹ based on ¹H, ¹³C and ¹⁵N chemical shifts was performed utilizing the TALOS-N program suite ¹⁰.

¹⁵N Relaxation: (¹H)-¹⁵N NOE spectrum¹¹ for $A\beta_{1-40}$ in DMSO_{d6} was acquired at 800 MHz and 30 °C on a 100 µM uniformly ¹⁵N-labeled sample. To measure the backbone ¹H-¹⁵N NOE ratio, spectral increment in the ¹⁵N dimension with and without ¹H saturation were recorded in an interleaved fashion and divided during processing into two spectra. The experiments were carried out with an overall recycling delay of 10 s. This experiment provide information on the ps-ns backbone motions ¹².

H/X exchange experiment: To test if $A\beta_{1-40}$ in DMSO adopts stable secondary structure, 11 µL of 10 µg/µL ¹⁵N-A β_{1-40} were diluted ten-fold from DMSO_{d6} into D₂O containing 10 mM NaAc_{d3}/DAc_{d3} buffer (final pH 4.52). The exchange of amide protons with solvent deuterons was measured at 5 °C using a ¹⁵N-labeled sample. NMR data acquisition was started within about 15 min of the initiation of the exchange reaction. A series of SOFAST ¹H-¹⁵N HMQC¹³ spectra (relaxation delay of 0.2 s and pulse centered at 8.00 ppm, 768 complex data points, 32 *t*1 increments, 64 scans per increment) were collected over the course of three hours. The acquisition time for each experiment was 9 min. All the spectra Laurents et al.

were processed with NMRPipe ¹⁷ using the same processing scheme and parameters. The solutions, pipette tips and NMR tube had been precooled in a refrigerator (4 °C). The shim of the magnet, lock and tuning had been previously optimized using an identical sample.

Thioflavin T (ThT) fluorescence Assay for formation of amyloid-like structure: ThT fluorescence assays were performed following the protocol described by LeVine ¹⁴. Stock solution of ThT (Sigma, St. Louis, USA) was prepared in 3 mM KH₂PO₄/K₂HPO₄ buffer, pH 6.8, to a final concentration of 1 mM. A β_{1-40} peptide (rPeptide) was dissolved in both water and DMSO (0.2 mM) and incubated overnight at room temperature. The next morning, they were vortexed just before initiating the experimental measurements with time = 0 being defined as the moment of vortexing. The samples were then incubated and aliquots were taken every two hours to prepare the final samples used for the ThT assay. These samples contained 50 µM ThT and 25 µM in A β_{1-40} in each of the solvents; namely, water and DMSO. Spectra were recorded at 30 °C on a Jobin-Yvon Fluoromax-4 instrument. The excitation wavelength was 440 nm and emission was recorded over 460-500 nm at a scan speed of 0.2 nm s⁻¹, using a slit width of 3 nm for both excitation and emission.

Binding studies with the inhibitor compounds: 1D ¹H and 2D ¹H-¹³C HSQC spectra were recorded on the four inhibitor compounds, compound one (C1) = 2-methyl-5,6,7,8tetrahydro-4H-[1]benzothieno[2,3-d][1,3]oxazin-4-one, compound two (C2)= 2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide, compound three (C3)= N-(4-chloro-2nitrophenyl)-N'-phenylurea and compound four (C4) = 6-[(4-chlorophenyl)sulfonyl]-2phenylpyrazolo[1,5-a]pyrimidin-7-amine, either dissolved in water (compound 1) or neat DMSO_{d6} (compounds 1-4) to confirm their identify and assess their purity.

To determine the regions in A β affected by inhibitor binding, ¹H-¹⁵N HSQC spectra were recorded on ¹⁵N-A β ₁₋₄₀ samples (concentration 100 μ M) in either 10% DMSO_{d6}, 80% H₂O, 10% D₂O with 10 mM KH₂PO₄/K₂HPO₄ pH 7 buffer (for C1) or neat DMSO_{d6} (for C1, C2,

C3 and C4), in the absence or the presence of 1 eq, 3 eq and 5 eq of inhibitor. To analyze ¹H-¹⁵N HSQC spectra of ¹⁵N-A β_{1-40} in aqueous solution, we used the assignments reported by the Zagorski¹⁵ and Gräslund¹⁶ laboratories and recently corroborated and extended by Martins et al.¹⁷. This report corroborates and is more complete than previous studies. Spectra were recorded at 5° C (aqueous solutions) or 30°C (neat DMSO_{d6}) on a Bruker 600 MHz (¹H) instrument. Chemical shift changes were determined using the Bruker TOPSPIN 2.1 program, and reported as the weighted mean change of the ¹H and ¹⁵N nuclei as calculated using the equation:

 $\Delta \delta \text{ (weighted mean} = \sqrt{\{(\delta^{1}H+C - \delta^{1}H)^{2} + ((\delta^{15}N+C - \delta^{15}N)^{2}/25)\}} \text{ (eqn 1)}$

where δ ¹H+C and δ ¹⁵N+C are the chemical shift values in the presence of inhibitor compound. It is important to point out that these spectra detect monomeric ¹⁵N-A β_{1-40} and the smallest oligomers and that larger aggregates are invisible to liquid state NMR spectroscopy.

Supporting References:

- 1. Pantoja-Uceda, D.; Santoro, J. J Magn Reson. 2008, 195, 187-195
- 2. Pantoja-Uceda, D.; Santoro, J. J Biomol NMR 2012, 54, 145-153
- 3. Pantoja-Uceda, D.; Santoro, J. J. Biomol. NMR 2009, 45, 351-356
- 4. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277-293
- 5. Jung, Y. S.; Zweckstetter, M. J. Biomol. NMR 2004, 30, 11-23

6. Laurents, D. V.; Gorman, P. M.; Guo, M.; Rico, M.; Chakrabartty, A.; Bruix, M. J. Biol. Chem. 2005, 280, 3675-3685

- 7. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7520
- 8. Markley, J. L.; Bax, A.; Arata, Y.; Hilbers, C. W.; Kaptein, R.; Sykes, B. D.; Wright, P. E.; Wüthrich, K. *Pure Appl. Chem.* **1998**, *70*, 117-142
- 9. Berjanski, M. V.; Wishart, D. S. J. Am. Chem. Soc. 2005, 127, 14970-14971
- 10. Shen, Y.; Bax, A. J. Biomol. NMR 2013, 56, 227-241
- 11. Farrow, N. A.; Muhandiram, R.; Singer, A. U.; Pascal, S. M.; Kay, C. M.; Gish, G.; Shoelson,
- S. E.; Pawson, T.; Forman-Kay, J. D.; Kay, L. E. Biochemistry 1994, 33, 5984-6003
- 12. Palmer, A. G. Chemical Reviews 2004, 104, 3623-3640
- 13. Schanda, P.; Brutscher, B. J. Am. Chem. Soc. 2005, 127, 8014-8015
- 14. LeVine, H. I. Prot Sci 1993, 404-410,
- 15. Hou, L.; Shao, H.; Zhang, Y.; Li, H.; Memon, N. K.; Neuhaus, E. G.; Brewer, J. M.; Byeon, I.-
- J. L.; Ray, D. G.; Vitek, M. P., et al. J. Am. Chem. Soc. 2004, 126, 1992-2005

16. Danielsson, J.; Andersson, A.; Jarvet, J.; Gräslund, A. Mag. Res. Chem. 2006, 44, S114-S121

17. Martins, A. F.; Dias, D.; Morfin, J. F.; Lacerda, S.; Laurents, D. V.; Töth, E.; Geraldes, C. F. G. C. *Chem. Eur. J.* 2015, *doi:10.1002/chem.201406152*,

TYPE OF SPECTRUM	# SCANS	MATRIX	SWEEP WIDTH (ppm) /
			<pre>mixing time (ms)</pre>
1D 1H	32	32k	12
2D TOCSY	16	2k x 512	10 x 10 / 60
2D NOESY	64 - 80	2k x 512	10 x 10 / 150
2D ¹ H- ¹⁵ N HSQC	8	2k x 256	12 x 20
2D ¹ H- ¹⁵ N HSQC*	16	2k x 288	12 x 8.9
2D ¹ H- ¹³ C HSQC	8	2k x 256	8 x 60
3D ¹ H- ¹⁵ N NOESY-	16	2k x 64 x 96	12 x 22 x 12 / 150
HSQC		1H 15N 1H	1H 15N 1H
3D ¹ H- ¹³ C NOESY-	32	2k x 64 x 80	13 x 56 x 13 / 150
HSQC		1H 13C 1H	1H 13C 1H
3D HNCO	4	2k x 32 x 90	9 x 8.9 x 22.1
		1H 15N 13C	1H 15N 13C
3D CBCA(CO)NH	8	2k x 32 x 100	9 x 8.9 x 7.5
3D HNCABCB	16	2k x 32 x 100	9 x 8.9 x 75
3D HNCA-intra	8	2k x 32 x 90	9 x 8.9 x 32
3D HNCA	8	2k x 32 x 90	9 x 8.9 x 32
3D (H)CC(CO)NH	8	2k x 32 x 128	9 x 8.9 x 75
		1H 15N 13C	1H 15N 13C
3D H(CCCO)NH	8	2k x 32 x 110	9 x 8.9 x 12
		1H 15N x 1H	1H 15N 1H
(4,2)D HN(COCA)NH	8	2k x 512	9 x 40
		1H _i (∑1H _j ,15N _i ,15	$1H_{i}$ ($\sum 1H_{j}$, 15N _i , 15N _j)
		N _j)	
2D ¹ H- ¹⁵ N HSQC with	8	2k x 256	10 x 20 / relaxation
or without NOE			delay = 10 s
2D ¹ H- ¹⁵ N SOFAST	64 /	768 x 32	14 x 23 / relaxation
HMQC (to monitor	aqc.		delay = 0.2 s
H/D exchange)	Time =		
	10 min.		

Supporting Table 1: NMR Spectral Acquisition.

 $^{*1}H^{-15}N$ HSQC for amino acid type discrimination, see Pantoja-Uceda & Santoro (2008); Pantoja-Uceda & Santoro (2012).

	N	HN	HA	HB	HG	HD	HE	HZ	CO	CA	CB	CG	CD	CE
D1			4.050	2.775,	-	-	-		170.7	51.99	38.88	-	-	-
				2.610										
A2	121.9	8.57	4.292	1.156	-	-	-		174.6	51.34	20.99	-	-	-
E3	116.2	8.01	4.175	1.803,	2.147	-	-		174.0	55.03	30.48	33.23	-	-
E4	116.5	7 87	1 112	2 859	-	7 23	7 36	7 30	174 3	57 18	30 01	-	-	-
£4	110.5	/.0/	4.442	2.588	-	1.25	/.50	1.50	1/4.5	57.10	35.51	-	_	-
R5	117.8	8.17	4.252	1.521.	1.668	3.06	-		174.2	55.29	32.02	28.02	43.50	-
				1.434										
H6	117.1	8.13	4.530	3.00,	-	-	-		173.3	54.89	31.0	-	-	-
				2.90										
D7	118.3	8.36	4.573	2.688,	-	-	-		173.9	52.42	39.24	-	-	-
				2.614										
S8	113.5	8.13	4.238	3.594	-	-	-		173.3	58.42	64.63	-	-	-
G9	106.7	8.06	3.688	-	-	-	-		171.6	44.91	-	-	-	-
110	110.5	/.94	4.516	2.765,	-	7.01	0.04		1/4.5	30.41	40.38	-	-	-
E11	118.2	8.20	4.287	1.876.	2,219	-	-		174.3	55.02	30.25	33.39	-	-
				1.733										
V12	115.5	7.71	4.122	1.92	0.80,	-	-		174.0	60.81	33.6	22.2,	-	-
					0.78							21.0		
H13	119.6	8.16	4.489	3.00,	-	-	-			55.30	31.0	-	-	-
				2.90										
HI4			4.489	3.00,	-	-	-		1/3.3	55.46	31.0	-	-	-
015	118 7	8 36	4 188	1.80	2 070	-	-		174 2	55.02	30 99	3/ 52	-	-
K16	118.6	8.21	4.226	1.614	1.269	1.469	2.72		174.3	55.28	34.26	25.20	29.69	41.8
L17	119.4	7.90	4.298	1.384,	1.517	0.81;	-		174.7	53.95	43.58	27.31	26.1,	-
				1.331		0.76							24.7	
V18	115.2	7.64	4.054	1.81	0.68	-	-		173.5	60.56	33.8	22.2,	-	-
												21.1		
F19	118.9	7.88	4.497	2.927,	-	7.18	7.36	7.30	173.8	56.58	40.61	-	-	-
500	116.0	0.05	4 5 2 2	2.695		7.04	- 20	7 20	172.6	56 57	10 17			
FZU	110.9	0.05	4.000	2.901,	-	1.24	/.30	/.30	1/3.0	56.57	40.47	-	-	-
3.21	121 2	8 1 2	4 300	1 192	_	-	_		175 0	51 18	21.08	-	-	-
E22	115.5	7.97	4.277	1.869.	2,219	-	-		174.1	54.65	30.81	33.03	-	-
				1.721										
D23	118.1	8.22	4.575	2.693	-	-	-		173.4	52.65	38.64	-	-	-
V24	114.1	7.64	4.125	1.92	0.80,	-	-		173.1	60.82	33.6	22.2,	-	-
					0.78							21.0		
G25	107.6	8.09	3.709	-	-	-	-		171.8	44.87	-	-	-	-
520	112.5	0.01	4.329	3.524	-	-	-		173.1	57.71	04.07	-	-	-
112/	119.5	0.21	4.524	2.655,	-	-	-		1/4.0	52.00	35.75	-	_	-
K28	117.4	7.95	4.132	1.687	1.301	1.47	2.72		174.8	55.69	33.80	25.07	29.55	41.8
G29	105.7	8.09	3.624	-	-	-	-		171.3	44.95	-	-	-	-
A30	119.7	7.83	4.313	1.157	-	-	-		175.2	51.00	21.27	-	-	-
I31	115.6	7.87	4.133	1.708	1.40,	0.77	-		173.9	60.00	39.20	27.4;	14.08	-
					1.05;									
T 2 2	110 7	7 60	4 1 4 4	1 600	0.77	0.77			174 1	50.01	20.00	18.44	14.00	
132	110./	/.09	4.144	1.099	1.40,	0.77	-		1/4.1	59.91	39.00	27.4;	14.00	-
					0.79							18.35		
G33	108.3	8.06	3.641	-	-	-	-		171.4	44.95	-	-	-	-
L34	118.0	7.85	4.309	1.426,	1.545	0.84;	-		175.1	54.01	44.13	27.04	26.1	-
				1.382		0.80							24.7	
M35	118.4	8.13	4.330	1.888,	2.36,	-	2.00		174.0	54.95	34.49	32.6	-	17.8
				1.773	2.42									
V36	114.7	7.60	4.119	1.92	0.80,	-	-		174.1	60.65	33.6	22.2,	-	-
637	108.0	8.16	3 780	_	0.78	-	-		171 9	44 88	-	21.0	_	_
G38	105.0	8.00	3.723	-	-	-	-		171.5	44.87	-	-	-	-
V39	114.0	7.76	4.302	2.01	0.86	-	-		174.2	60.15	32.6	22.2,	-	-
												21.3		
V40	117.0	7.98	4.056	1.82	0.68	-	-			60.34	33.8	22.2,	-	-
												21.1		

Supporting Table 2: ¹H, ¹³C, ¹⁵N assignments of $A\beta_{1-40}$ in DMSO_{d6} at 30 °C.

Residue	H/X Intrinsic Lifetime (min) ^a	Protection Factor	Residue H/X Intrinsic	H/X Intrinsic Lifetime (min) ^a	Protection Factor	
Asn 1			Ala 21	5.08	3.1	
Ala 2	0.176	91	Glu 22	11.1	1.4	
Glu 3	11.1	1.5	Asp 23	8.30	1.9	
Phe 4 ^b	9.69	7 ± 5	Val 24	27.2	0.57	
Arg 5	4.26	3.8	Gly 25	4.35	3.7	
His 6	0.621	26	Ser 26	1.74	9.2	
Asp 7	1.39	12	Asn 27	0.984	16.3	
Ser 8	3.03	5.3	Lys 28	3.12	5.1	
Gly 9	1.62	9.9	Gly 29	2.44	6.6	
Tyr 10	7.18	2.2	Ala 30	3.98	4.0	
Glu 11	10.0	1.6	Ile 31	25.1	17 ± 8	
Val 12	23.8	0.7	Ile 32	36.5	6.9 ± 0.6	
His 13	1.41	11.3	Gly 33	5.30	3.0	
His 14	0.161	99	Leu 34	13.7	3.9 ± 1.5	
Gln 15	0.824	4	Met 35	9.27	1.7	
Lys 16	4.07	1.1	Val 36	19.4	0.82	
Leu 17	15.1	1.1	Gly 37	4.35	3.7	
Val 18	33.8	0.5	Gly 38	2.18	7.3	
Phe 19	12.9	1.2	Val 39	17.3	0.92	
Phe 20	8.52	1.9	Val 40	99.4	1.8 ± 0.2	

Supporting Table 3: $A\beta_{1-40}$ Calculated Intrinsic Hydrogen/Deuterium Exchange and Experimentally Determined Protection Factors (pH* 4.52, 5°C).

^a Calculated on the basis of the polypeptide sequence using the nearest neighbor parameters of Bai *et al* (1993) and the temperature of 5 °C and the final pH* of 4.52.

^b Residues with observed slow exchange and calculated protection factors are shown in bold. For the remaining residues, the protection factors shown are the upper limits calculated on the basis of the experimental dead time (16 minutes) and each HN group's intrinsic exchange lifetime.

Sup. Fig. 1 ¹H-¹⁵N HSQC Spectra of $A\beta_{1-40}$ in water/DMSO mixtures.

A β_{1-40} in H₂O (**black**), 1:16::DMSO _{d6}:H₂O (**blue**), 1:8::DMSO_{d6}:H₂O (**green**), 100% DMSO _{d6} (**red**). The chemical shift perturbations induced by DMSO_{d6} are -1.3 ± 1.7 ppB /% DMSO_{d6} for ¹HN and 27 ± 11 ppB / % DMSO_{d6} for ¹⁵N over the range of 0 – 12.5 % DMSO_{d6}. V40 (¹H δ = 7.92 ppm, ¹⁵N δ = 128.7 ppm in H₂O and ¹H δ = 7.98 ppm, ¹⁵N δ = 117.0 ppm in 100% DMSO_{d6}), which is the residue most affected by low amounts of DMSO (-5.4 ppB/%DMSO_{d6} for ¹HN and -50 ppB / %DMSO_{d6} for ¹⁵N), is also the residue whose HN resonances differ the most in aqueous solution vs. 100% DMSO_{d6}.

Sup. Fig. 2 "Strip" plot showing representative inter-residual correlations based on the 3D HNCACB spectrum.

Three positive (cyan) and three negative (red) contours are plotted. Note that in this spectrum, C α resonances appear as positive signals while C β signals are negative. The ¹³C chemical shift, plotted on the y-axis ranges from 4.5 ppm (*top*) to 79 ppm (*bottom*). The ¹H, ¹⁵N chemical shifts and residue identity are indicated at the bottom of the graph. Due to spectral folding to optimize acquisition time and sensitivity, the ¹⁵N chemical shifts of A21 and G25 are displaced.

Sup. Fig. 3 $^{1}H^{-13}C$ HSQC of A β_{1-40} Panel A, Alpha region

Sup. Fig. 3 (cont.) ¹H-¹³C HSQC of $A\beta_{1-40}$ Panel **B**, Side chain Region.

Sup. Fig. 4: Comparison of chemical shift values of $A\beta_{1-40}$ (this work) and $A\beta_{1-28}$ {Sorimachi, K. & Craik D. J. (1994)} in DMSO.

Left y-axis, ¹H α chemical shift values, right y-axis, ¹HN chemical shifts.

Sup. Fig. 5: 2D ¹H-¹H NOESY spectrum of $A\beta_{1-40}$ in DMSO_{d6}.

Peaks which could be unambiguously assigned are labeled. Contour base is 120000 and the multiplication factor between contours is 1.5 x.

Sup. Fig. 6. ¹H-¹⁵N HSQC spectra of $A\beta_{1-40}$ without and with heteronuclear NOE.

¹H-¹⁵N HSQC Spectra of $A\beta_{1-40}$ in 100% DMSO_{d6} without (left panel) and with (right panel) application of the heteronuclear NOE. In the right panel, positive peaks are plotted as black contours and negative peaks are plotted in red.

Sup. Fig. 7 Comparison of ¹H-¹⁵N NOE ratio of $A\beta_{1-40}$ in water and DMSO_{d6}.

Comparison of the peak integrals with and without application of the ¹H-¹⁵N heteronuclear NOE. **Purple** diamonds, this work in DMSO_{d6}; **Green** open circles, Riek *et al.* (2001) in aqueous solution.

17

Sup. Fig. 8

Sup. Fig. 9 Thioflavin T Assay for Amyloid-like Conformers.

Thioflavin T fluorescence of 25 μ M A $\beta_{1.40}$ in DMSO (*panel A*) and H₂O (*panel B*), at 30 °C. In DMSO, the peptide is in its monomeric form as indicated by the absence of a strong fluorescence enhancement at 482 nm

upon dilution into ThT containing buffer. Evolution over time is consistent with the lack of amyloid-like conformers. In contrast, following incubation in aqueous solution (*panel B*) a strong increase in ThT fluorescence emission is observed, which is consistent with the presence of amyloid-like conformers. The decreasing intensity signal over time may arise from slow precipitation of $A\beta_{1-40}$ aggregates.

Sup. Fig. 10 1D ¹H NMR Spectra of A β and Inhibitor Compounds.

1D ¹H NMR spectra of A β_{1-40} in **A**. 90%H₂O/10%D₂O pH 7, 5°C either alone **A**. (**black** spectrum) or **B**. with a large excess of 2-methyl-5,6,7,8-tetrahydro-4H-[1]benzothieno[2,3-d][1,3]oxazin-4-one (compound 1, **purple** spectrum). The H₂O signal was suppressed using a Watergate module.

1D ¹H NMR spectra of A $\beta_{1.40}$ in 100% DMSO_{d6} 30°C alone C. (**brown** spectrum) or in the presence of a large excess of **D**. 2,5-dichloro-N-(4-peperidinophenyl)-3-thiophenesulfonamide (compound 2 **blue** spectrum); **E**. N-(4-chloro-2-nitrophenyl)-N'-phenylurea (compound 3, **green** spectrum) or **F**. 6-[(4chlorophenyl)sulfonyl]-2-phenylpyrazolo[1,5-a]pyrimidin-7-amine (compound 4. **red** spectrum). The intense peaks at 3.3 and 2.5 ppm in panels C, D, E and F arise from H_2O and penta-deuterated, mono-hydrogenated DMSO (DMSO_{d5h1}), respectively.

 $A\beta_{1-40}$ peaks without (**black**) and with one (**blue**), three (green) and five (**red**) equivalents of C1. All peaks are plotted as contours separated by a multiplication factor of two.

Sup. Fig. 11B $2D \,^{1}H^{-15}N$ HSQC Spectra of A β alone or in the presence of C1 in neat **DMSO**_{d6}.

 $A\beta_{1-40}$ peaks without (**black**) and with one (**blue**), three (green) and five (red) equivalents of C1. All peaks are plotted as contours separated by a multiplication factor of two.

Supporting Figure 12

¹H-¹⁵N A β Chemical Shift Changes Induced by C2 (A), C3 (B) and C4 (C) in DMSO_{d6}

The weighted average shift changes for ¹H and ¹⁵N nuclei in the presence of 1 eq of inhibitor (large open blue circles, dotted line), 3 eq inhibitor (green diamonds, dashed lines) and 5 inhibitor (small red circles) were calculated as reported in the **Methods** section. The data at sequence # 42, 45/46 and 48/49 correspond to the side chain groups of R5, Q15 and N27, respectively