Supplementary information for the manuscript:

# Monitoring and engineering reactor microbiomes of denitrifying bioelectrochemical systems

Authors: N. Pous, C. Koch, A. Vilà-Rovira, M.D. Balaguer, J. Colprim, J. Mühlenberg, S.

Müller, F. Harnisch, F. and S. Puig.

Summary:

**S1** (Page S2) - Analyses of N<sub>2</sub>O using gas chromatography.

**S2** (Page S3) - Computational fluid dynamics calculation.

**S3** (Page S4) - Gate template used for flow cytometry data analyses.

**S4** (Page S5) – Absolute current density and nitrate, nitrite and nitrous oxide consumption rates at the different stress-tests.

**S5** (Pages S6 – S9) - Cell abundance of each gate during the whole experimental study at the different SP.

**S6** (Page S10) - Box plot for cell abundances of each gate during the whole experimental study.

S7 (Pages S11 – S13) - Correlation data between gate cell abundances and reactor performance using data of ST-4 and ST-5 phases..

**S8** (Pages S14 – S18) - Correlation data between gate cell abundances and reactor performance using the whole dataset.

**S9** (Page S19) - Dynamics on G2 cell abundance organized through nitrate consumption rate.

**S10** (Page S20) - Contribution of *Thiobacillus* sp. according to T-RFLP analysis of the samples taken directly from the cathode volume.

References (Page S21)

**Video 1.** Evolution of cytometric measurements at the four sampling ports: SP-A (green), SP-B (violet), SP-C (blue) and SP-D (orange).

S1: Analyses of N<sub>2</sub>O using gas chromatography.

### Instrumental:

The analyses of  $N_2O$  were performed on an Agilent 7890A GC/ $\mu$ ECD system with an Agilent G1888 headspace autosampler.

### Gas chromatograph

The injection mode was split 1:10. The injector temperature was kept at 250 °C. For the separation a HP-Plot/Q column (30 m x 0.53 mm x 40  $\mu$ m; Agilent Technologies) was used. The gas chromatography system was operating at programmed-temperature-mode as follows: initial temperature 40 °C hold for 4 min, linear ramp 30 °C·min<sup>-1</sup> till 220 °C and hold for 1 min. A  $\mu$ ECD (electron capture detector) heated at 250 °C was used for data acquisition.

#### Headspace-sampler

| Temperat      | tures  | Timing                |         | Pressures           |         |  |  |  |  |
|---------------|--------|-----------------------|---------|---------------------|---------|--|--|--|--|
| Oven          | 90 °C  | Vial equilibration    | 0.5 min | Carrier             | 7.0 psi |  |  |  |  |
| Loop (1 ml)   | 150 °C | Pressurization        | 0.5 min | Vial                | 7.2 psi |  |  |  |  |
| Transfer line | 180 °C | Loop fill             | 0.4 min | <br> <br>           |         |  |  |  |  |
|               |        | Loop<br>equilibration | 0.1 min | <br> <br> <br> <br> |         |  |  |  |  |
|               |        | Inject                | 0.4 min | <br> <br> <br>      |         |  |  |  |  |

| Table S1. Instrumental | settings of the | headspace-sampler |
|------------------------|-----------------|-------------------|
|------------------------|-----------------|-------------------|

#### Sample preparation:

For the analysis 3 mL of sample were placed in a 20-mL headspace vial and tightly closed with an aluminium crimp cap with PTFE/silicone septum using a hand crimper. Samples have to be carefully transferred from experimental equipment to the 20 mL vial, to prevent loss of nitrous oxide by shaking or outgassing.

Calibration was done by analyzing different dilutions of a saturated N<sub>2</sub>O-solution. Water has been filled into a 100 mL volumetric flask and the nitrous oxide was passed through a filter with 300 mL·min<sup>-1</sup> for 3 min at room temperature and atmospheric pressure. The solubility of nitrous oxide at 20 °C and atmospheric pressure is 1200 mg·L<sup>-1</sup>.<sup>1</sup> Calibration levels were between 2.4 and 600 mg·L<sup>-1</sup>. The detection limit is 2.4 mgL<sup>-1</sup>.

#### S2: Computational fluid dynamics calculation

The velocities generated inside the cathode were calculated using a computational fluid dynamics program (Ansys Fluent v12.1<sup>2</sup>). To do this, both mass and momentum equations were solved. The mass conservation is shown in equation S1.

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \vec{v}) = S_m \text{ (eq. S1)}$$

Where  $\rho$  is the fluid density, v represents the velocity vector, and S<sub>m</sub> is a source term (by chemical reaction, phases mass exchanges, among others).

The equation of momentum conservation in an inertial (non-accelerating) reference frame is described as shown in equation S2.

$$\frac{d}{dt}(\rho\vec{v}) + \nabla \cdot (\rho\vec{v}\vec{v}) = -\nabla p + \nabla \cdot (\tau) + \rho\vec{g} + \vec{F}$$
(eq. S2)

From which  $\rho$  is the static pressure,  $\rho g$  and F are gravitational and external body forces, and  $\tau$  is the stress tensor, which is calculated using equation S3.

$$\vec{\tau} = \mu \left[ \left( \nabla \vec{v} + \nabla \vec{v}^T \right) - \frac{2}{3} \nabla \cdot \vec{v} I \right]_{(\text{eq. S3})}$$

Steady state simulations were developed considering single water based phase. To close the solution of the different solutions, velocity inlet boundary conditions for the influent/outflow streams, as well as for both recirculation streams were defined, taking in account the fluxes specified in experimental section. The inlet recirculation streams values were formulated based on the values from the outflow recirculation stream. Wall boundary conditions were developed for the methacrylate walls of the reactor as well as for the rod graphite surface. The simulations were performed at a constant temperature of 22°C and atmospheric pressure. The influent flow and the recirculation loop generated heterogeneous flows inside this chamber, which suggested zones with different nitrate availability. **S3:** Gate template used for flow cytometry data analyses.



Figure S1. Gate template used for flow cytometry data analyses.

**S4:** Absolute current density and nitrate, nitrite and nitrous oxide consumption rates at the different stress-tests.



Figure S2. Current density expressed in absolute values, and nitrate, nitrite and nitrous oxide consumption rates at the phases. Error bars represent the standard deviation of the different stress-tests.Table S2. Mean value and standard deviation of current density (in absolute value) and nitrate, nitrite and nitrous oxide consumption rates at the different phases.

| Dhaga        | ~        | j        | $\Delta NO_3$ -                           | $\Delta NO_2^-$                           | $\Delta N_2 O$                            |
|--------------|----------|----------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Phases       | 1 114305 |          | $(mgN \cdot L^{-1}_{NCC} \cdot day^{-1})$ | $(mgN \cdot L^{-1}_{NCC} \cdot day^{-1})$ | $(mgN \cdot L^{-1}_{NCC} \cdot day^{-1})$ |
| Start_u      | n        | 21.7±1.4 | 97.7±11.5                                 | 96.9±11.4                                 | 90.1±4.0                                  |
| 51411-4      | ŀÞ       | 14.9±1.4 | 91.5±0.0                                  | 64.4±0.0                                  | 64.4±0.0                                  |
|              | ST-1     | 0.8±0.2  | 19.0±1.3                                  | 2.3±3.2                                   | 2.3±3.2                                   |
|              | ST-2     | 9.5±1.4  | 68.0±6.2                                  | 31.7±8.0                                  | 23.2±15.6                                 |
|              | ST-3     | 12.0±0.6 | 58.9±7.8                                  | 11.1±9.7                                  | 1.5±2.1                                   |
| Stress-tests | ST-4     | 22.8±2.0 | 131.9±18.6                                | 13.9±18.2                                 | 12.0±18.2                                 |
|              | ST-5     | 0.0±0.0  | 14.5±0.0                                  | 0.0±0.0                                   | 0.0±0.0                                   |
|              | ST-6     | 10.6±0.0 | 58.0±0                                    | 20.9±0.0                                  | 20.6±0.0                                  |
|              | ST-7     | 23.1±0.7 | 102.0±6.6                                 | 49.8±8.4                                  | 49.6±8.6                                  |

**S5:** Cell abundance of each gate during the whole experimental study at the different SP.

| Day | G1_A  | G2_A  | G3_A | G4_A  | G5_A | G6_A  | G7_A | <b>G8_</b> A | G9_A  | G10_A | G11_A | G12_A | G13_A | G14_A | G15_A | G16_A | G17_A | G18_A | G19_A | G20_A | G21_A |
|-----|-------|-------|------|-------|------|-------|------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 32  | 10.70 | 8.00  | 6.28 | 3.48  | 7.94 | 16.10 | 4.22 | 8.66         | 20.60 | 1.53  | 1.61  | 4.42  | 2.01  | 1.63  | 1.66  | 0.20  | 0.78  | 0.92  | 3.46  | 8.94  | 3.37  |
| 38  | 9.83  | 9.19  | 2.17 | 2.81  | 5.45 | 16.70 | 2.44 | 9.22         | 24.50 | 1.16  | 1.38  | 5.91  | 1.29  | 1.68  | 1.17  | 0.40  | 3.15  | 0.78  | 3.27  | 11.90 | 2.89  |
| 42  | 7.72  | 13.90 | 5.64 | 3.45  | 4.34 | 15.30 | 5.31 | 7.69         | 19.50 | 1.34  | 1.68  | 5.11  | 2.45  | 1.55  | 2.46  | 0.45  | 1.71  | 1.57  | 3.46  | 7.80  | 3.84  |
| 46  | 9.23  | 12.10 | 6.42 | 4.78  | 6.16 | 9.32  | 5.23 | 6.17         | 11.60 | 1.59  | 2.40  | 3.70  | 2.77  | 1.96  | 2.78  | 0.58  | 1.64  | 1.92  | 5.57  | 6.88  | 4.83  |
| 49  | 7.43  | 15.40 | 5.80 | 4.98  | 4.80 | 8.28  | 5.44 | 6.47         | 11.30 | 4.23  | 4.50  | 2.69  | 2.06  | 3.99  | 1.86  | 0.65  | 1.39  | 1.51  | 7.83  | 6.31  | 3.99  |
| 53  | 8.75  | 11.70 | 3.06 | 2.43  | 4.86 | 15.70 | 2.69 | 7.60         | 20.20 | 1.50  | 1.55  | 7.73  | 1.10  | 2.62  | 0.98  | 0.32  | 1.99  | 0.85  | 3.75  | 8.03  | 2.27  |
| 56  | 10.00 | 12.10 | 4.70 | 2.13  | 8.41 | 9.79  | 3.92 | 6.30         | 12.50 | 1.08  | 1.19  | 3.48  | 1.10  | 2.39  | 1.41  | 0.80  | 2.03  | 1.39  | 3.13  | 9.14  | 2.68  |
| 60  | 7.26  | 12.60 | 4.20 | 2.63  | 5.17 | 16.10 | 3.96 | 7.46         | 21.00 | 1.28  | 1.22  | 5.44  | 1.37  | 2.34  | 1.38  | 0.25  | 1.39  | 1.12  | 4.40  | 9.63  | 2.88  |
| 63  | 7.87  | 18.30 | 5.38 | 2.46  | 5.13 | 16.90 | 3.07 | 5.52         | 18.90 | 1.17  | 1.46  | 4.81  | 1.21  | 2.27  | 1.25  | 0.50  | 2.11  | 1.86  | 3.66  | 7.01  | 2.59  |
| 67  | 7.82  | 9.32  | 4.74 | 2.17  | 2.99 | 17.50 | 3.10 | 4.65         | 18.20 | 1.74  | 1.54  | 12.20 | 1.29  | 3.53  | 0.98  | 0.70  | 6.23  | 3.08  | 3.67  | 5.45  | 2.35  |
| 70  | 8.16  | 26.80 | 8.43 | 2.72  | 4.82 | 12.90 | 5.10 | 5.35         | 15.20 | 0.81  | 1.34  | 2.00  | 2.38  | 0.89  | 2.31  | 0.50  | 2.25  | 4.23  | 2.78  | 4.04  | 3.51  |
| 74  | 3.08  | 10.10 | 2.44 | 1.36  | 1.42 | 5.83  | 1.32 | 1.83         | 6.76  | 1.90  | 1.68  | 36.90 | 0.61  | 24.80 | 0.65  | 0.33  | 1.25  | 1.43  | 6.49  | 1.80  | 0.91  |
| 77  | 4.95  | 26.10 | 4.31 | 2.28  | 3.18 | 9.44  | 2.31 | 4.93         | 14.40 | 2.88  | 5.31  | 2.22  | 0.92  | 3.51  | 1.16  | 1.36  | 2.29  | 2.65  | 7.54  | 7.97  | 1.80  |
| 82  | 4.99  | 22.50 | 3.65 | 2.30  | 3.22 | 12.40 | 2.66 | 5.69         | 15.50 | 1.87  | 1.31  | 14.40 | 1.21  | 4.01  | 1.08  | 0.58  | 1.57  | 1.45  | 3.60  | 4.34  | 2.33  |
| 84  | 3.93  | 19.00 | 2.84 | 2.70  | 2.83 | 16.40 | 2.33 | 5.00         | 17.10 | 3.14  | 1.70  | 12.50 | 1.15  | 4.56  | 0.94  | 0.64  | 1.53  | 1.17  | 4.97  | 4.83  | 2.26  |
| 88  | 4.19  | 27.30 | 3.42 | 3.45  | 4.19 | 12.00 | 2.57 | 6.40         | 15.20 | 1.29  | 1.54  | 4.84  | 1.33  | 2.08  | 1.35  | 1.02  | 1.21  | 1.44  | 4.68  | 5.85  | 3.25  |
| 95  | 4.05  | 25.20 | 3.48 | 2.97  | 3.91 | 10.90 | 3.70 | 4.93         | 11.20 | 1.35  | 2.84  | 3.72  | 3.37  | 1.96  | 1.82  | 0.39  | 0.60  | 2.07  | 5.17  | 4.70  | 3.30  |
| 97  | 3.18  | 31.60 | 2.41 | 2.53  | 3.93 | 15.10 | 2.46 | 3.71         | 14.30 | 1.65  | 2.31  | 6.16  | 2.11  | 2.60  | 1.30  | 0.50  | 0.51  | 1.31  | 4.68  | 3.77  | 2.39  |
| 102 | 2.17  | 13.30 | 1.43 | 34.60 | 2.43 | 8.15  | 2.12 | 2.46         | 7.35  | 21.00 | 4.48  | 2.37  | 0.99  | 1.03  | 0.79  | 0.11  | 0.17  | 0.60  | 23.70 | 2.59  | 14.30 |
| 104 | 3.38  | 27.90 | 2.48 | 2.57  | 4.50 | 11.90 | 2.41 | 4.66         | 13.50 | 1.04  | 1.81  | 4.35  | 1.93  | 1.96  | 1.33  | 0.22  | 0.56  | 1.11  | 4.27  | 6.36  | 2.62  |

Table S3. Cell abundance of each gate at SP-A at each sampling day.

| Day | G1_B | G2_B  | G3_B | G4_B | G5_B | G6_B  | G7_B | <b>G8_B</b> | G9_B  | G10_B | G11_B | G12_B | G13_B | G14_B | G15_B | G16_B | G17_B | G18_B | G19_B | G20_B | G21_B |
|-----|------|-------|------|------|------|-------|------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 32  | 2.74 | 8.18  | 2.42 | 1.75 | 3.70 | 13.40 | 2.34 | 7.11        | 14.40 | 1.51  | 1.75  | 8.05  | 0.84  | 3.09  | 0.66  | 0.07  | 0.25  | 0.99  | 3.01  | 13.70 | 1.69  |
| 38  | 5.48 | 8.38  | 2.39 | 2.11 | 4.56 | 15.20 | 2.36 | 6.01        | 16.10 | 1.39  | 1.47  | 8.48  | 0.98  | 2.90  | 0.98  | 0.21  | 1.35  | 0.76  | 3.09  | 10.10 | 2.24  |
| 42  | 7.51 | 10.10 | 3.61 | 2.83 | 6.05 | 13.00 | 3.71 | 6.88        | 16.30 | 1.39  | 1.51  | 6.97  | 1.73  | 2.28  | 1.60  | 0.27  | 1.43  | 0.88  | 3.18  | 9.36  | 3.46  |
| 46  | 9.51 | 12.50 | 5.77 | 3.64 | 7.34 | 10.10 | 5.19 | 6.53        | 12.60 | 1.42  | 1.63  | 4.20  | 2.04  | 1.92  | 2.52  | 0.43  | 1.57  | 1.51  | 4.16  | 8.17  | 4.40  |
| 49  | 8.97 | 11.10 | 6.80 | 5.00 | 5.24 | 7.58  | 6.73 | 5.67        | 9.02  | 4.10  | 4.08  | 3.43  | 2.65  | 5.44  | 2.22  | 0.71  | 1.90  | 1.80  | 7.97  | 6.31  | 4.33  |
| 53  | 3.74 | 10.30 | 2.52 | 1.82 | 5.22 | 14.80 | 5.01 | 5.85        | 15.20 | 1.35  | 1.18  | 8.90  | 4.78  | 2.68  | 1.54  | 0.86  | 0.48  | 0.79  | 2.80  | 9.95  | 3.82  |
| 56  | 6.21 | 14.10 | 3.95 | 2.33 | 6.29 | 13.30 | 4.49 | 5.47        | 14.40 | 1.48  | 1.41  | 6.81  | 1.83  | 2.91  | 1.39  | 1.55  | 1.11  | 1.49  | 3.37  | 7.62  | 3.32  |
| 60  | 8.11 | 17.20 | 4.98 | 2.02 | 5.98 | 12.40 | 3.66 | 6.65        | 15.10 | 1.24  | 1.00  | 5.44  | 1.11  | 2.50  | 1.27  | 1.86  | 1.75  | 1.75  | 2.99  | 7.63  | 2.26  |
| 63  | 7.07 | 16.10 | 4.69 | 2.06 | 5.31 | 16.00 | 3.00 | 4.97        | 16.20 | 1.24  | 1.28  | 7.05  | 1.17  | 2.50  | 1.16  | 3.44  | 1.96  | 1.98  | 3.02  | 6.90  | 2.30  |
| 67  | 7.06 | 10.20 | 6.35 | 2.15 | 4.35 | 11.60 | 4.58 | 6.14        | 12.30 | 1.33  | 1.44  | 6.41  | 1.85  | 2.52  | 1.46  | 2.68  | 5.85  | 4.29  | 3.05  | 6.88  | 2.67  |
| 70  | 5.90 | 21.30 | 5.75 | 1.99 | 4.56 | 15.60 | 3.81 | 5.23        | 16.90 | 1.21  | 1.50  | 6.35  | 1.72  | 2.70  | 1.57  | 2.43  | 1.55  | 2.89  | 2.99  | 5.38  | 2.44  |
| 74  | 4.40 | 23.40 | 4.18 | 1.88 | 3.98 | 15.90 | 3.60 | 5.58        | 18.60 | 1.11  | 1.21  | 5.80  | 2.19  | 2.36  | 1.41  | 2.97  | 1.83  | 2.27  | 2.80  | 6.17  | 2.62  |
| 77  | 3.21 | 17.80 | 2.47 | 1.86 | 3.81 | 16.20 | 2.19 | 6.15        | 18.40 | 2.22  | 3.38  | 7.43  | 0.99  | 3.64  | 0.87  | 5.08  | 1.09  | 1.43  | 5.41  | 7.84  | 1.63  |
| 82  | 3.53 | 16.20 | 2.55 | 2.02 | 4.27 | 15.80 | 3.74 | 6.19        | 16.40 | 1.42  | 1.40  | 10.20 | 3.28  | 3.89  | 1.47  | 3.41  | 0.87  | 1.19  | 3.51  | 6.37  | 3.24  |
| 84  | 3.35 | 18.60 | 2.54 | 2.06 | 3.88 | 15.80 | 2.77 | 6.85        | 16.50 | 1.39  | 1.44  | 9.75  | 1.82  | 3.63  | 1.09  | 2.75  | 1.29  | 1.24  | 3.37  | 6.77  | 2.62  |
| 88  | 4.07 | 30.50 | 3.60 | 3.05 | 4.03 | 10.90 | 2.48 | 6.09        | 14.50 | 1.17  | 1.45  | 4.33  | 1.20  | 2.12  | 1.29  | 0.76  | 1.35  | 1.61  | 4.30  | 5.55  | 3.03  |
| 95  | 3.88 | 19.30 | 3.06 | 2.63 | 5.55 | 12.20 | 2.93 | 8.31        | 15.90 | 1.03  | 1.51  | 4.64  | 1.83  | 1.92  | 1.55  | 0.49  | 0.55  | 1.30  | 3.92  | 9.02  | 2.82  |
| 97  | 2.63 | 22.00 | 2.01 | 2.60 | 3.86 | 16.30 | 2.53 | 6.67        | 19.00 | 1.28  | 1.52  | 7.79  | 1.57  | 2.64  | 1.05  | 0.69  | 0.51  | 0.82  | 4.11  | 7.73  | 2.72  |
| 102 | 2.96 | 19.70 | 1.76 | 2.10 | 4.21 | 13.80 | 1.85 | 8.76        | 18.10 | 0.95  | 1.10  | 8.46  | 1.04  | 1.96  | 1.06  | 0.51  | 0.35  | 0.69  | 3.25  | 9.61  | 2.03  |
| 104 | 2.74 | 20.30 | 1.93 | 2.92 | 4.19 | 12.50 | 2.01 | 8.90        | 18.30 | 0.95  | 1.21  | 4.60  | 1.25  | 1.90  | 1.13  | 0.38  | 0.59  | 0.68  | 3.93  | 10.00 | 2.91  |

| Day | G1_C | G2_C  | G3_C | G4_C | G5_C | G6_C  | G7_C | <b>G8_</b> C | G9_C  | G10_C | G11_C | G12_C | G13_C | G14_C | G15_C | G16_C | G17_C | G18_C | G19_C | G20_C | G21_C |
|-----|------|-------|------|------|------|-------|------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 32  | 6.40 | 11.30 | 6.85 | 3.26 | 3.70 | 22.80 | 4.76 | 7.00         | 29.30 | 1.29  | 1.47  | 3.64  | 1.86  | 1.52  | 2.05  | 0.26  | 0.77  | 2.18  | 3.53  | 7.95  | 3.23  |
| 38  | 6.36 | 11.50 | 5.39 | 3.01 | 4.08 | 24.30 | 4.19 | 7.40         | 31.70 | 1.28  | 1.37  | 3.93  | 1.58  | 1.58  | 1.67  | 0.18  | 1.15  | 1.51  | 3.35  | 8.22  | 3.21  |
| 42  | 8.38 | 11.50 | 5.71 | 3.85 | 4.34 | 20.30 | 4.17 | 6.26         | 23.40 | 1.52  | 1.75  | 4.18  | 1.76  | 2.24  | 1.89  | 0.21  | 1.90  | 1.51  | 4.56  | 7.97  | 3.75  |
| 46  | 7.48 | 10.40 | 6.08 | 3.11 | 5.06 | 14.70 | 4.48 | 7.95         | 18.50 | 1.29  | 1.60  | 3.96  | 1.68  | 1.93  | 2.16  | 0.33  | 1.15  | 1.57  | 3.85  | 9.72  | 3.57  |
| 49  | 7.90 | 11.70 | 6.20 | 5.30 | 4.83 | 8.17  | 5.80 | 5.68         | 10.30 | 4.88  | 4.63  | 3.21  | 1.94  | 5.67  | 1.91  | 0.41  | 1.35  | 1.55  | 8.56  | 6.80  | 4.09  |
| 53  | 5.09 | 9.59  | 2.10 | 2.09 | 5.47 | 11.10 | 2.20 | 9.50         | 15.10 | 1.05  | 1.17  | 4.38  | 0.62  | 2.05  | 0.84  | 0.39  | 0.50  | 0.42  | 2.71  | 13.80 | 2.14  |
| 56  | 9.54 | 11.00 | 6.17 | 2.78 | 8.11 | 10.20 | 4.70 | 7.34         | 13.40 | 0.97  | 1.26  | 3.25  | 1.27  | 1.86  | 1.86  | 0.46  | 1.24  | 1.55  | 3.02  | 10.20 | 3.60  |
| 60  | 7.28 | 10.60 | 8.85 | 2.57 | 4.05 | 13.90 | 6.20 | 7.29         | 17.40 | 1.23  | 1.35  | 5.47  | 2.28  | 2.40  | 2.48  | 0.28  | 1.13  | 2.56  | 3.39  | 8.58  | 3.62  |
| 63  | 6.37 | 11.90 | 7.74 | 2.46 | 7.47 | 11.70 | 4.27 | 7.07         | 14.00 | 1.01  | 1.31  | 3.97  | 1.22  | 2.09  | 1.86  | 0.49  | 1.29  | 4.45  | 3.16  | 9.06  | 3.19  |
| 67  | 6.17 | 8.51  | 6.62 | 4.68 | 3.60 | 14.80 | 4.24 | 5.33         | 15.20 | 1.10  | 3.04  | 4.37  | 1.44  | 3.14  | 1.44  | 0.68  | 7.49  | 4.35  | 9.64  | 6.45  | 3.13  |
| 70  | 6.68 | 21.60 | 7.89 | 2.61 | 4.81 | 17.90 | 4.91 | 5.10         | 19.40 | 0.80  | 1.64  | 3.05  | 1.96  | 1.27  | 2.07  | 0.63  | 2.32  | 4.39  | 3.54  | 4.55  | 3.07  |
| 74  | 6.26 | 24.10 | 5.84 | 7.43 | 3.13 | 9.88  | 2.72 | 3.91         | 13.30 | 8.48  | 6.95  | 1.91  | 1.23  | 1.19  | 1.25  | 0.60  | 3.14  | 3.35  | 11.30 | 4.05  | 2.74  |
| 77  | 6.23 | 10.30 | 3.90 | 2.92 | 8.33 | 8.48  | 2.93 | 5.83         | 11.70 | 1.18  | 1.15  | 2.99  | 0.91  | 1.48  | 1.18  | 0.94  | 0.78  | 1.43  | 3.15  | 9.55  | 3.53  |
| 82  | 6.78 | 26.30 | 5.32 | 2.79 | 4.96 | 11.90 | 3.57 | 6.82         | 16.40 | 0.99  | 1.43  | 3.33  | 1.53  | 1.56  | 1.59  | 0.65  | 2.55  | 2.43  | 3.53  | 5.58  | 3.24  |
| 84  | 6.16 | 27.50 | 5.38 | 2.78 | 4.47 | 10.60 | 3.77 | 6.01         | 13.90 | 1.04  | 1.44  | 3.57  | 1.58  | 1.80  | 1.58  | 0.59  | 3.25  | 2.72  | 3.70  | 4.89  | 3.19  |
| 88  | 4.40 | 22.90 | 3.56 | 3.24 | 4.58 | 13.40 | 3.33 | 5.99         | 16.10 | 1.20  | 1.56  | 5.94  | 1.85  | 2.24  | 1.59  | 0.92  | 1.06  | 1.56  | 4.74  | 6.27  | 3.54  |
| 95  | 4.88 | 21.50 | 3.98 | 3.32 | 6.34 | 10.80 | 3.91 | 5.46         | 12.50 | 1.13  | 2.25  | 3.62  | 2.77  | 1.74  | 2.08  | 0.37  | 0.59  | 2.11  | 4.90  | 6.42  | 3.97  |
| 97  | 3.50 | 14.90 | 2.88 | 4.72 | 6.86 | 12.90 | 3.03 | 6.60         | 16.00 | 1.64  | 1.91  | 5.76  | 1.18  | 2.24  | 1.22  | 0.58  | 0.48  | 0.98  | 5.45  | 8.84  | 4.32  |
| 102 | 4.22 | 25.20 | 2.95 | 3.14 | 5.77 | 11.80 | 2.59 | 5.51         | 15.20 | 1.11  | 1.69  | 3.83  | 1.65  | 1.86  | 1.47  | 0.41  | 0.37  | 1.43  | 4.29  | 7.51  | 3.46  |
| 104 | 3.54 | 15.10 | 3.94 | 4.75 | 6.47 | 11.70 | 4.22 | 5.98         | 14.60 | 1.46  | 1.78  | 4.42  | 1.42  | 1.88  | 1.21  | 0.47  | 0.55  | 1.02  | 5.32  | 8.47  | 4.50  |

| Table S6. Cell abundance of each gate at SP-D at each sampling | day. |
|----------------------------------------------------------------|------|
|----------------------------------------------------------------|------|

| Day | G1_D  | G2_D  | G3_D  | G4_D  | G5_D  | G6_D  | G7_D | G8_D | G9_D  | G10_D | G11_D | G12_D | G13_D | G14_D | G15_D | G16_D | G17_D | G18_D | G19_D | G20_D | G21_D |
|-----|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 38  | 5.41  | 8.54  | 3.15  | 22.10 | 2.19  | 10.00 | 4.50 | 3.16 | 11.10 | 13.40 | 0.93  | 1.47  | 1.01  | 0.67  | 0.92  | 0.33  | 1.87  | 0.93  | 8.87  | 19.10 | 14.60 |
| 42  | 16.90 | 15.50 | 9.50  | 3.60  | 6.70  | 11.00 | 5.88 | 5.30 | 14.50 | 1.19  | 2.05  | 2.23  | 3.12  | 1.08  | 2.66  | 0.40  | 2.85  | 1.83  | 3.41  | 4.95  | 4.36  |
| 46  | 10.00 | 14.00 | 5.77  | 5.18  | 6.02  | 9.00  | 4.33 | 5.91 | 12.20 | 1.87  | 2.83  | 3.56  | 2.54  | 2.03  | 2.29  | 0.71  | 1.78  | 1.25  | 6.01  | 6.39  | 4.73  |
| 49  | 12.30 | 13.90 | 5.26  | 4.48  | 6.86  | 7.23  | 5.00 | 6.55 | 10.60 | 1.82  | 2.59  | 2.91  | 2.03  | 2.11  | 1.74  | 0.83  | 2.22  | 1.36  | 5.44  | 6.45  | 4.24  |
| 53  | 12.70 | 12.50 | 6.27  | 3.08  | 6.21  | 8.93  | 4.40 | 6.05 | 11.00 | 1.53  | 1.90  | 4.17  | 1.59  | 2.19  | 1.75  | 0.67  | 2.87  | 1.90  | 4.18  | 6.48  | 3.01  |
| 56  | 13.30 | 14.20 | 7.15  | 2.83  | 6.84  | 9.21  | 5.03 | 4.75 | 11.40 | 1.39  | 1.93  | 3.45  | 1.62  | 2.10  | 1.92  | 0.76  | 2.59  | 2.06  | 4.02  | 6.35  | 3.04  |
| 60  | 11.30 | 18.30 | 5.97  | 3.27  | 6.08  | 9.02  | 4.48 | 5.68 | 12.10 | 1.72  | 1.83  | 2.71  | 1.54  | 1.75  | 1.91  | 0.47  | 2.50  | 1.73  | 4.51  | 5.36  | 3.03  |
| 63  | 9.74  | 14.50 | 6.85  | 2.51  | 5.69  | 11.50 | 3.75 | 5.22 | 12.30 | 1.54  | 1.85  | 4.41  | 1.71  | 2.09  | 1.76  | 0.58  | 2.08  | 2.46  | 4.01  | 5.82  | 2.70  |
| 67  | 26.40 | 9.91  | 8.49  | 16.20 | 8.94  | 5.17  | 2.57 | 2.21 | 5.65  | 12.10 | 3.09  | 1.77  | 0.81  | 0.82  | 1.05  | 0.23  | 6.02  | 1.90  | 9.98  | 1.73  | 5.99  |
| 70  | 10.80 | 25.50 | 11.30 | 2.51  | 4.54  | 11.40 | 5.70 | 4.91 | 13.40 | 0.96  | 1.77  | 1.53  | 2.31  | 0.98  | 2.30  | 0.51  | 2.37  | 4.41  | 2.93  | 3.53  | 3.18  |
| 74  | 9.14  | 33.20 | 6.66  | 1.99  | 4.25  | 10.40 | 3.20 | 4.23 | 13.50 | 0.80  | 1.59  | 1.65  | 1.45  | 1.52  | 1.42  | 0.86  | 3.90  | 3.04  | 2.94  | 3.93  | 2.26  |
| 77  | 7.10  | 30.80 | 3.44  | 1.67  | 3.55  | 10.80 | 1.94 | 3.90 | 14.80 | 1.13  | 2.82  | 2.25  | 0.99  | 2.74  | 0.90  | 1.54  | 2.96  | 1.72  | 4.52  | 7.15  | 1.58  |
| 82  | 32.10 | 16.70 | 14.50 | 2.32  | 11.10 | 7.84  | 3.29 | 3.47 | 10.20 | 0.81  | 1.87  | 1.83  | 1.36  | 1.24  | 1.46  | 0.44  | 4.88  | 2.49  | 3.61  | 2.61  | 2.61  |
| 84  | 6.56  | 29.40 | 4.56  | 2.73  | 4.10  | 10.40 | 3.00 | 5.72 | 13.80 | 1.18  | 1.74  | 3.11  | 1.33  | 1.60  | 1.20  | 0.78  | 3.33  | 1.98  | 3.68  | 4.35  | 2.68  |
| 88  | 4.46  | 27.70 | 2.98  | 3.56  | 4.20  | 11.80 | 2.26 | 4.97 | 14.10 | 1.57  | 2.07  | 4.75  | 1.28  | 2.64  | 1.07  | 1.31  | 1.42  | 1.23  | 5.23  | 4.94  | 3.08  |
| 95  | 4.31  | 21.40 | 2.89  | 4.26  | 4.04  | 11.40 | 2.96 | 6.77 | 14.70 | 1.77  | 2.92  | 4.03  | 2.14  | 2.44  | 1.34  | 0.47  | 0.73  | 1.11  | 6.49  | 5.38  | 3.66  |
| 97  | 3.80  | 33.30 | 2.56  | 2.59  | 4.18  | 14.80 | 2.34 | 3.44 | 14.30 | 1.54  | 2.41  | 5.50  | 1.98  | 2.34  | 1.14  | 0.46  | 0.74  | 1.29  | 4.64  | 3.03  | 2.39  |
| 102 | 2.17  | 21.10 | 1.44  | 20.30 | 2.66  | 7.06  | 1.74 | 2.47 | 8.58  | 20.90 | 7.13  | 1.80  | 1.09  | 1.90  | 0.63  | 0.15  | 0.27  | 0.71  | 21.70 | 2.28  | 6.10  |



S6: Box plot for cell abundances of each gate during the whole experimental study.

**Figure S3.** The box plot shows the relative cell abundance of each gate (numbered as gate number) at each sampling port (SP-A, –B, -C and –D) during the whole experimental study. The box plot allows an easy visualization of which gates are the most abundant at each sampling port. In this study, gates 2, 6 and 9 were the most abundant in sampling ports SP-A, -B and -C, while gates 1, 2, 6 and 9 were the most abundant in sampling port SP-D.

**S7:** Correlation data between gate cell abundances and reactor performance using data of ST-4 and ST-5 phases.

**Table S7.** Correlation of SP-A gates with reactor performance using data of ST-4 and ST-5 phases. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance data included: pH at cathode effluent (pHeff), current density (Current\_den), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively). Green colored indicates positive correlations higher than 0.4.

|                            | Current_den | $\Delta NO_3^-$ | $\Delta NO_2^-$ | $\Delta N_2 O$ | CE   |  |  |
|----------------------------|-------------|-----------------|-----------------|----------------|------|--|--|
| Current_den                | 1.0         | 0.9             | 0.1             | 0.2            | 0.9  |  |  |
| Δ <b>NO</b> 3 <sup>-</sup> | 0.9         | 1.0             | 0.4             | 0.4            | 0.7  |  |  |
| $\Delta NO_2^-$            | 0.1         | 0.4             | 1.0             | 0.9            | -0.2 |  |  |
| $\Delta N_2 O$             | 0.2         | 0.4             | 0.9             | 1.0            | -0.2 |  |  |
| СЕ                         | 0.9         | 0.7             | -0.2            | -0.2           | 1.0  |  |  |
| pHeff                      | 0.7         | 0.5             | 0.1             | 0.2            | 0.4  |  |  |
| G1_A                       | -0.4        | -0.4            | -0.5            | -0.5           | -0.3 |  |  |
| G2_A                       | 0.5         | 0.7             | 0.6             | 0.6            | 0.3  |  |  |
| G3_A                       | -0.2        | -0.1            | -0.4            | -0.4           | 0.0  |  |  |
| G4_A                       | 0.3         | 0.3             | 0.0             | 0.0            | 0.2  |  |  |
| G5_A                       | 0.3         | 0.4             | 0.0             | 0.0            | 0.2  |  |  |
| G6_A                       | -0.1        | -0.1            | -0.2            | 0.0            | -0.3 |  |  |
| G7_A                       | 0.0         | 0.0             | -0.3            | -0.2           | 0.0  |  |  |
| <b>G8_A</b>                | 0.2         | 0.2             | -0.2            | -0.3           | 0.1  |  |  |
| G9_A                       | -0.1        | -0.1            | -0.2            | -0.2           | -0.3 |  |  |
| G10_A                      | -0.1        | -0.1            | 0.2             | 0.0            | -0.2 |  |  |
| G11_A                      | -0.3        | 0.0             | 0.6             | 0.3            | -0.3 |  |  |
| G12_A                      | 0.0         | -0.2            | -0.2            | -0.2           | 0.1  |  |  |
| G13_A                      | 0.2         | 0.3             | 0.2             | 0.4            | 0.0  |  |  |
| G14_A                      | 0.0         | -0.2            | -0.1            | -0.1           | 0.2  |  |  |
| G15_A                      | 0.2         | 0.3             | 0.0             | 0.0            | 0.2  |  |  |
| G16_A                      | -0.3        | -0.1            | 0.3             | 0.0            | -0.3 |  |  |
| G17_A                      | -0.9        | -0.9            | -0.4            | -0.4           | -0.8 |  |  |
| G18_A                      | -0.5        | -0.4            | -0.3            | -0.3           | -0.3 |  |  |
| G19_A                      | -0.1        | 0.0             | 0.4             | 0.2            | -0.1 |  |  |
| G20_A                      | -0.3        | -0.1            | 0.0             | -0.2           | -0.3 |  |  |
| G21_A                      | 0.2         | 0.2             | -0.2            | -0.1           | 0.2  |  |  |

**Table S8.** Correlation of SP-B gates with reactor performance using data of ST-4 and ST-5 phases. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance data included: pH at cathode effluent (pHeff), current density (Current\_den), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively). Green colored indicates positive correlations higher than 0.4.

|                            | Current_den | $\Delta NO_3^-$ | $\Delta NO_2^-$ | $\Delta N_2 O$ | CE   |
|----------------------------|-------------|-----------------|-----------------|----------------|------|
| Current_den                | 1.0         | 0.9             | 0.1             | 0.2            | 0.9  |
| Δ <b>NO</b> 3 <sup>-</sup> | 0.9         | 1.0             | 0.4             | 0.4            | 0.7  |
| Δ <b>NO</b> 2 <sup>-</sup> | 0.1         | 0.4             | 1.0             | 0.9            | -0.2 |
| $\Delta N_2 O$             | 0.2         | 0.4             | 0.9             | 1.0            | -0.2 |
| СЕ                         | 0.9         | 0.7             | -0.2            | -0.2           | 1.0  |
| pHeff                      | 0.7         | 0.5             | 0.1             | 0.2            | 0.4  |
| G1_B                       | -0.5        | -0.6            | -0.7            | -0.6           | -0.2 |
| G2_B                       | 0.6         | 0.5             | 0.1             | 0.3            | 0.6  |
| G3_B                       | -0.5        | -0.7            | -0.7            | -0.6           | -0.3 |
| G4_B                       | 0.2         | 0.2             | 0.2             | 0.4            | 0.1  |
| G5_B                       | 0.0         | 0.0             | -0.5            | -0.4           | 0.2  |
| <b>G6_B</b>                | 0.4         | 0.5             | 0.3             | 0.3            | 0.3  |
| G7_B                       | -0.5        | -0.6            | -0.5            | -0.5           | -0.3 |
| <b>G8_B</b>                | 0.0         | 0.0             | 0.5             | 0.5            | -0.3 |
| G9_B                       | 0.5         | 0.6             | 0.6             | 0.5            | 0.4  |
| G10_B                      | -0.3        | 0.0             | 0.4             | 0.1            | -0.4 |
| G11_B                      | -0.3        | 0.0             | 0.5             | 0.2            | -0.3 |
| G12_B                      | 0.3         | 0.3             | 0.2             | 0.1            | 0.0  |
| G13_B                      | 0.2         | 0.1             | -0.1            | -0.2           | 0.1  |
| G14_B                      | 0.1         | 0.3             | 0.2             | -0.1           | 0.0  |
| G15_B                      | -0.1        | -0.2            | -0.6            | -0.5           | 0.1  |
| G16_B                      | -0.3        | -0.2            | -0.1            | -0.4           | -0.2 |
| G17_B                      | -0.9        | -0.9            | -0.5            | -0.4           | -0.7 |
| G18_B                      | -0.8        | -0.9            | -0.6            | -0.5           | -0.5 |
| G19_B                      | 0.0         | 0.2             | 0.7             | 0.4            | -0.2 |
| G20_B                      | -0.3        | 0.0             | 0.7             | 0.5            | -0.5 |
| G21_B                      | 0.4         | 0.2             | -0.1            | 0.0            | 0.2  |

**Table S9.** Correlation of SP-C gates with reactor performance using data of ST-4 and ST-5 phases. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance data included: pH at cathode effluent (pHeff), current density (Current\_den), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively). Green colored indicates positive correlations higher than 0.4.

|                            | Current_den | $\Delta NO_3$ | Δ <b>NO</b> 2 <sup>-</sup> | $\Delta N_2 O$ | СЕ   |
|----------------------------|-------------|---------------|----------------------------|----------------|------|
| Current_den                | 1.0         | 0.9           | 0.1                        | 0.2            | 0.9  |
| Δ <b>NO</b> 3 <sup>-</sup> | 0.9         | 1.0           | 0.4                        | 0.4            | 0.7  |
| Δ <b>NO</b> 2 <sup>-</sup> | 0.1         | 0.4           | 1.0                        | 0.9            | -0.2 |
| $\Delta N_2 O$             | 0.2         | 0.4           | 0.9                        | 1.0            | -0.2 |
| СЕ                         | 0.9         | 0.7           | -0.2                       | -0.2           | 1.0  |
| pHeff                      | 0.7         | 0.5           | 0.1                        | 0.2            | 0.4  |
| G1_C                       | -0.2        | -0.3          | -0.6                       | -0.8           | 0.1  |
| G2_C                       | 0.7         | 0.5           | -0.2                       | -0.2           | 0.7  |
| G3_C                       | -0.2        | -0.3          | -0.8                       | -0.7           | 0.1  |
| G4_C                       | -0.3        | -0.4          | 0.1                        | 0.2            | -0.2 |
| G5_C                       | 0.1         | 0.4           | 0.6                        | 0.4            | -0.1 |
| G6C                        | -0.1        | -0.2          | -0.3                       | -0.1           | -0.1 |
| G7_C                       | -0.1        | -0.2          | -0.6                       | -0.5           | 0.0  |
| <b>G8_</b> C               | 0.4         | 0.5           | 0.3                        | 0.3            | 0.1  |
| <b>G9_</b> C               | 0.3         | 0.2           | -0.1                       | 0.0            | 0.2  |
| G10_C                      | 0.0         | -0.1          | -0.1                       | 0.0            | 0.2  |
| G11_C                      | -0.2        | -0.4          | -0.2                       | -0.1           | 0.0  |
| G12_C                      | 0.1         | 0.1           | 0.3                        | 0.5            | -0.2 |
| G13_C                      | 0.3         | 0.1           | -0.5                       | -0.4           | 0.4  |
| G14_C                      | -0.5        | -0.5          | 0.0                        | 0.1            | -0.7 |
| G15_C                      | 0.3         | 0.2           | -0.6                       | -0.6           | 0.5  |
| G16_C                      | -0.3        | -0.1          | 0.2                        | 0.0            | -0.2 |
| G17_C                      | -0.7        | -0.9          | -0.5                       | -0.5           | -0.6 |
| G18_C                      | -0.3        | -0.5          | -0.8                       | -0.7           | 0.0  |
| G19_C                      | -0.5        | -0.6          | -0.2                       | 0.0            | -0.4 |
| G20_C                      | -0.2        | 0.1           | 0.6                        | 0.5            | -0.4 |
| G21_C                      | 0.2         | 0.4           | 0.8                        | 0.9            | -0.2 |

**S8:** Correlation data between gate cell abundances and reactor performance using the whole dataset.



**Figure S4.** Correlation of the most abundant subcommunities G2, G6 and G9 with reactor performance using Spearman's rank correlation in the whole monitored period. Strong positive correlation is indicated by color red. Strong negative correlation is indicated by blue. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance included: pH at cathode effluent (*pHeff*), absolute current density (*|j|*), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively).

**Table S10.** Correlation of SP-A gates with reactor performance using the whole dataset. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance data included: pH at cathode effluent (pHeff), current density (Current\_den), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively). Green colored indicates positive correlations higher than 0.4.

|                            | Current_den | $\Delta NO_3^-$ | Δ <b>NO</b> 2 <sup>-</sup> | $\Delta N_2 O$ | СЕ   |
|----------------------------|-------------|-----------------|----------------------------|----------------|------|
| Current_den                | 1.0         | 0.9             | 0.2                        | 0.2            | 0.8  |
| Δ <b>NO</b> 3 <sup>-</sup> | 0.9         | 1.0             | 0.2                        | 0.2            | 0.6  |
| Δ <b>NO</b> 2 <sup>-</sup> | 0.2         | 0.2             | 1.0                        | 0.9            | -0.2 |
| $\Delta N_2 O$             | 0.2         | 0.2             | 0.9                        | 1.0            | -0.2 |
| СЕ                         | 0.8         | 0.6             | -0.2                       | -0.2           | 1.0  |
| pHeff                      | 0.1         | 0.0             | 0.3                        | 0.2            | 0.3  |
| G1_A                       | -0.7        | -0.6            | -0.3                       | -0.4           | -0.4 |
| G2_A                       | 0.6         | 0.7             | 0.2                        | 0.2            | 0.4  |
| G3_A                       | -0.3        | -0.2            | -0.5                       | -0.6           | -0.1 |
| G4_A                       | 0.2         | 0.1             | 0.4                        | 0.5            | 0.0  |
| G5_A                       | -0.4        | -0.4            | -0.2                       | -0.2           | -0.1 |
| G6_A                       | -0.2        | -0.2            | -0.2                       | -0.1           | -0.3 |
| G7_A                       | -0.4        | -0.4            | -0.2                       | -0.2           | -0.1 |
| G8A                        | -0.5        | -0.4            | -0.1                       | -0.2           | -0.3 |
| <b>G9_A</b>                | -0.4        | -0.3            | -0.2                       | -0.2           | -0.4 |
| G10_A                      | 0.2         | 0.1             | 0.4                        | 0.4            | 0.0  |
| G11_A                      | 0.0         | 0.1             | 0.5                        | 0.3            | -0.2 |
| G12_A                      | 0.1         | 0.1             | -0.3                       | -0.2           | 0.1  |
| G13_A                      | -0.2        | -0.2            | 0.1                        | 0.1            | -0.1 |
| G14_A                      | 0.1         | 0.1             | -0.2                       | -0.2           | 0.2  |
| G15_A                      | -0.2        | -0.2            | 0.0                        | -0.1           | 0.0  |
| G16_A                      | 0.0         | 0.2             | -0.1                       | -0.3           | -0.1 |
| G17_A                      | -0.5        | -0.4            | -0.3                       | -0.3           | -0.6 |
| G18_A                      | -0.1        | 0.0             | -0.4                       | -0.4           | -0.1 |
| G19_A                      | 0.2         | 0.1             | 0.5                        | 0.5            | 0.1  |
| G20_A                      | -0.6        | -0.5            | 0.0                        | -0.1           | -0.3 |
| G21_A                      | 0.2         | 0.0             | 0.4                        | 0.5            | 0.0  |

**Table S11.** Correlation of SP-B gates with reactor performance using the whole dataset. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance data included: pH at cathode effluent (pHeff), current density (Current\_den), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively). Green colored indicates positive correlations higher than 0.4.

|       | Current_den | $\Delta NO_3^-$ | $\Delta NO_2^-$ | $\Delta N_2 O$ | CE   |
|-------|-------------|-----------------|-----------------|----------------|------|
| G1_B  | -0.4        | -0.4            | -0.2            | -0.3           | 0.0  |
| G2_B  | 0.8         | 0.7             | 0.0             | 0.1            | 0.7  |
| G3_B  | -0.3        | -0.3            | -0.5            | -0.5           | 0.0  |
| G4_B  | 0.0         | -0.1            | 0.2             | 0.1            | 0.0  |
| G5_B  | -0.3        | -0.3            | 0.0             | -0.1           | 0.1  |
| G6_B  | 0.4         | 0.5             | 0.0             | 0.1            | 0.1  |
| G7_B  | -0.4        | -0.3            | -0.2            | -0.4           | -0.1 |
| G8_B  | 0.1         | -0.1            | 0.5             | 0.6            | -0.1 |
| G9_B  | 0.5         | 0.6             | 0.3             | 0.5            | 0.3  |
| G10_B | -0.3        | -0.1            | 0.0             | -0.2           | -0.2 |
| G11_B | -0.2        | -0.1            | 0.1             | -0.1           | -0.2 |
| G12_B | 0.1         | 0.3             | 0.1             | 0.1            | -0.2 |
| G13_B | -0.1        | 0.0             | 0.0             | -0.2           | 0.0  |
| G14_B | -0.1        | 0.1             | -0.1            | -0.3           | -0.1 |
| G15_B | -0.1        | -0.1            | 0.0             | -0.2           | 0.1  |
| G16_B | 0.2         | 0.4             | -0.4            | -0.5           | 0.2  |
| G17_B | -0.4        | -0.4            | -0.4            | -0.4           | -0.4 |
| G18_B | -0.2        | -0.2            | -0.6            | -0.6           | -0.1 |
| G19_B | 0.0         | 0.1             | 0.2             | 0.0            | 0.0  |
| G20_B | -0.5        | -0.5            | 0.3             | 0.3            | -0.5 |
| G21_B | -0.1        | -0.1            | 0.1             | 0.0            | 0.0  |

**Table S12.** Correlation of SP-C gates with reactor performance using the whole dataset. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance data included: pH at cathode effluent (pHeff), current density (Current\_den), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively). Green colored indicates positive correlations higher than 0.4.

|              | Current_den | $\Delta NO_3^-$ | Δ <b>NO</b> 2 <sup>-</sup> | $\Delta N_2 O$ | СЕ   |
|--------------|-------------|-----------------|----------------------------|----------------|------|
| G1_C         | -0.4        | -0.3            | -0.3                       | -0.5           | 0.0  |
| G2_C         | 0.7         | 0.6             | -0.1                       | 0.0            | 0.6  |
| G3_C         | -0.2        | -0.3            | -0.7                       | -0.6           | 0.2  |
| G4_C         | 0.0         | -0.1            | 0.1                        | 0.2            | -0.1 |
| G5_C         | 0.3         | 0.3             | 0.4                        | 0.2            | 0.2  |
| G6_C         | -0.4        | -0.3            | -0.1                       | 0.1            | -0.4 |
| G7_C         | -0.3        | -0.4            | -0.4                       | -0.4           | 0.1  |
| <b>G8_</b> C | -0.3        | -0.2            | 0.1                        | 0.0            | -0.2 |
| G9_C         | -0.4        | -0.3            | 0.0                        | 0.1            | -0.4 |
| G10_C        | 0.0         | 0.0             | -0.1                       | -0.1           | 0.2  |
| G11_C        | 0.0         | -0.1            | -0.1                       | -0.1           | 0.1  |
| G12_C        | 0.1         | 0.1             | 0.2                        | 0.3            | -0.1 |
| G13_C        | -0.1        | -0.3            | -0.2                       | -0.1           | 0.2  |
| G14_C        | -0.2        | -0.3            | 0.0                        | 0.0            | -0.2 |
| G15_C        | -0.2        | -0.3            | -0.4                       | -0.4           | 0.2  |
| G16_C        | 0.4         | 0.5             | -0.2                       | -0.2           | 0.2  |
| G17_C        | -0.2        | -0.2            | -0.5                       | -0.4           | -0.3 |
| G18_C        | 0.0         | 0.0             | -0.7                       | -0.6           | 0.1  |
| G19_C        | -0.1        | -0.2            | -0.1                       | 0.0            | -0.2 |
| G20_C        | -0.3        | -0.2            | 0.4                        | 0.2            | -0.3 |
| G21_C        | 0.2         | 0.1             | 0.4                        | 0.4            | 0.1  |

**Table S13.** Gates with positive correlations higher than 0.4 to reactor performance using the whole dataset. The different gates have been labeled as  $GX_Y$ , where: X = gate number and Y = sampling port. Reactor performance data included: current density (Current\_den), coulombic efficiency (*CE*) and nitrate, nitrite and nitrous oxide consumption rates ( $\Delta NO_3^-$ ,  $\Delta NO_2^-$  and  $\Delta N_2O$ , respectively).

| Current_den |     | ΔΝΟ   | 3   | ΔΝΟ   | $O_2^- \Delta N_2 O$ |       | 0   | CE   |     |
|-------------|-----|-------|-----|-------|----------------------|-------|-----|------|-----|
| G2_A        | 0.6 | G2_A  | 0.7 | G4_A  | 0.4                  | G4_A  | 0.5 | G2_A | 0.4 |
| G2_B        | 0.8 | G2_B  | 0.7 | G10_A | 0.4                  | G10_A | 0.4 | G2_B | 0.7 |
| G6_B        | 0.4 | G6_B  | 0.5 | G11_A | 0.5                  | G19_A | 0.5 | G2_C | 0.6 |
| G9 B        | 0.5 | G9 B  | 0.6 | G19 A | 0.5                  | G21 A | 0.5 |      |     |
| G2 C        | 0.7 | G16 B | 0.4 | G21 A | 0.4                  | G8 B  | 0.6 |      |     |
| G16 C       | 0.4 | G2 C  | 0.6 | G8 B  | 0.5                  | G9 B  | 0.5 |      |     |
|             |     | G16 C | 0.5 | G5 C  | 0.4                  | G21 C | 0.4 |      |     |
|             |     |       |     | G20 C | 0.4                  |       |     | ,    |     |
|             |     |       |     | G21_C | 0.4                  |       |     |      |     |

# **S9:** Dynamics on G2 cell abundance organized through nitrate consumption rate.

| $\Delta NO_3^-$                         | G2    | cell abundar (%) | nce   | Sampling<br>day | Current density                                             | $\Delta NO_2^-$                                                     | $\Delta N_2 O$                                                      |
|-----------------------------------------|-------|------------------|-------|-----------------|-------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| $(mgN \cdot L^{-1}_{NCC} \cdot d^{-1})$ | SP-A  | SP-B             | SP-C  | (day)           | $(\mathbf{m}\mathbf{A}\cdot\mathbf{L}^{-1}_{\mathrm{NCC}})$ | $(\text{mgN} \cdot \text{L}^{-1}_{\text{NCC}} \cdot \text{d}^{-1})$ | $(\text{mgN} \cdot \text{L}^{-1}_{\text{NCC}} \cdot \text{d}^{-1})$ |
| 14.5                                    | 9.32  | 10.20            | 8.51  | 67              | 0.00                                                        | 0.0                                                                 | 0.0                                                                 |
| 19.9                                    | 8.00  | 8.18             | 11.30 | 32              | 0.59                                                        | 0.0                                                                 | 0.0                                                                 |
| 53.4                                    | 12.60 | 17.20            | 10.60 | 60              | 11.61                                                       | 4.2                                                                 | 0.0                                                                 |
| 58.0                                    | 25.20 | 19.30            | 21.50 | 95              | 10.58                                                       | 20.9                                                                | 20.6                                                                |
| 62.8                                    | 9.19  | 8.38             | 11.50 | 38              | 7.77                                                        | 41.4                                                                | 41.4                                                                |
| 64.4                                    | 12.10 | 14.10            | 11.00 | 56              | 12.40                                                       | 18.0                                                                | 3.0                                                                 |
| 65.4                                    | 11.70 | 10.30            | 9.59  | 53              | 8.06                                                        | 29.3                                                                | 15.6                                                                |
| 65.8                                    | 15.40 | 11.10            | 11.70 | 49              | 10.45                                                       | 24.5                                                                | 9.8                                                                 |
| 67.1                                    | 12.10 | 12.50            | 10.40 | 46              | 10.64                                                       | 24.5                                                                | 10.4                                                                |
| 78.8                                    | 13.90 | 10.10            | 11.50 | 42              | 10.53                                                       | 38.7                                                                | 38.7                                                                |
| 97.3                                    | 27.90 | 20.30            | 15.10 | 104             | 22.58                                                       | 43.8                                                                | 43.6                                                                |
| 99.5                                    | 10.10 | 23.40            | 24.10 | 74              | 19.17                                                       | 6.0                                                                 | 6.0                                                                 |
| 106.7                                   | 13.30 | 19.70            | 25.20 | 102             | 23.56                                                       | 55.7                                                                | 55.7                                                                |
| 109.8                                   | 26.10 | 17.80            | 10.30 | 77              | 11.90                                                       | 33.9                                                                | 14.1                                                                |
| 122.4                                   | 19.00 | 18.60            | 27.50 | 84              | 25.02                                                       | 0.0                                                                 | 0.0                                                                 |
| 124.2                                   | 26.80 | 21.30            | 21.60 | 70              | 21.47                                                       | 0.0                                                                 | 0.0                                                                 |
| 128.7                                   | 27.30 | 30.50            | 22.90 | 88              | 23.31                                                       | 8.3                                                                 | 8.0                                                                 |
| 132.2                                   | 18.30 | 16.10            | 11.90 | 63              | 22.01                                                       | 0.0                                                                 | 0.0                                                                 |
| 155.5                                   | 31.60 | 22.00            | 14.90 | 97              | 23.80                                                       | 52.7                                                                | 52.2                                                                |
| 157.1                                   | 22.50 | 16.20            | 26.30 | 82              | 25.04                                                       | 19.0                                                                | 5.0                                                                 |

Table S14. G2 cell abundance dynamics at SP-A, SP-B and SP-C organized through nitrate consumption

rate. Other parameters of reactor performance are also shown organized through nitrate consumption rate.

## S10: Contribution of *Thiobacillus* sp. according to T-RFLP analysis of the samples

taken directly from the cathode volume.

| Stress-test | Day | SP-A | SP-B | SP-C |
|-------------|-----|------|------|------|
| ST-1        | 31  | 0    | 0    | 0    |
| ST-2        | 45  | 23   | 6    | 4    |
| ST-3        | 59  | 15   | 23   | 10   |
| ST-4        | 62  | 15   | 19   | 11   |
| ST-5        | 66  | 5    | 3    | 2    |
| ST-4        | 69  | 26   | 23   | 12   |
| ST-4        | 83  | 30   | 33   | 25   |
| ST-6        | 95  | 30   | 10   | 15   |
| <b>ST-7</b> | 104 | 54   | 10   | 14   |

**Table S15.** Contribution of the terminal restriction fragment affiliated to *Thiobacillus* sp. in the complete

 community based on T-RFLP. Data shown in percentage (%).

# References

(1) Thieme Chemistry (Hrsg.): *RÖMPP Online - Version 3.5*. Georg Thieme Verlag KG. Stuttgart **2009**.

(2) Ansys. Ansys fluent theory guide. Inc Northbrook IL. 2009. 49–53.