Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Second Harmonic Generation From the Novel Polar Polymorph α / β -BaTeMo_2O_9 Phases

A. H. Reshak^{1,2,*}

 ¹New Technologies - Research Centre, University of West Bohemia, Universitni 8, 306 14 Pilsen, Czech Republic
² Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis, Malaysia

Supplementary materials

Fig. S: (a) The optical transitions depicted on a generic band structure of β -BaTeMo₂O₉ phase. For simplicity, we have labeled the optical transitions as A, B, and C. The transitions (A) are responsible for the structures for $\varepsilon_2^{xx}(\omega)$, $\varepsilon_2^{yy}(\omega)$ and $\varepsilon_2^{zz}(\omega)$ in the spectral range 0.0 -5.0 eV; the transitions (B) 5.0-10.0 eV, and the transitions (C) 10.0 - 14.0 eV. The electronic band structure and the associated partial density of states suggests that the first spectral structure in $\varepsilon_2^{xx}(\omega)$, $\varepsilon_2^{yy}(\omega)$ and $\varepsilon_2^{zz}(\omega)$ is due to the transition from O-s/p, Te-s/p/d, Ba-s and Mo-s/p states to Te-s/p/d, O-s/p, Ba-s and Mo-s/p states. The second structure corresponds to transition between Mo-s/p/d, Ba-s, O-s/p, Te-s/p/d, Ba-s/d, Ta-s/p/d states.

Fig. S: (b) The optical transitions depicted on a generic band structure of α -BaTeMo₂O₉ phase. For simplicity, we have labeled the optical transitions as A, B, and C. The transitions (A) are responsible for the structures for $\varepsilon_2^{xx}(\omega)$, $\varepsilon_2^{yy}(\omega)$ and $\varepsilon_2^{zz}(\omega)$ in the spectral range 0.0 -5.0 eV; the transitions (B) 5.0-10.0 eV, and the transitions (C) 10.0 - 14.0 eV. The electronic band structure and the associated partial density of states suggests that the first spectral structure in $\varepsilon_2^{xx}(\omega)$, $\varepsilon_2^{yy}(\omega)$ and $\varepsilon_2^{zz}(\omega)$ is due to the transition from O-s/p, Te-s/p/d, Ba-s and Mo-s/p states to Te-s/p/d, O-s/p, Ba-s and Mo-s/p states. The second structure corresponds to transition between Mo-s/p/d, Ba-s, O-s/p, Te-s/p/d, Ba-s/d, Ta-s/p/d states.