Supplementary Information

Enhanced actuated strain of titanium dioxide/nitrile-butadiene rubber composite by biomimetic method

Dan Yang^{a,b}, Shuo Huang^{b,c}, Yibo Wu^{a,b}, Mengnan Ruan^{b,c}, Shuxin Li^{a,b}, Yuwei

Shang^{a,b}, Xiuguo Cui^a, Yang Wang^a, Wenli Guo^{a,b*}

^aDepartment of Material Science and Engineering, Beijing Institute of Petrochemical

Technology, Beijing, 102617, China.

^bBeijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617,

China

^cMaterials Science and Engineering, Beijing University of Chemical Technology,

Beijing 100029, China

*To whom correspondence should be addressed.

E-mail: gwenli@bipt.edu.cn

Material	Prestrain	Actuated strain ^a	Field Strength ^a	Ref.
	(x,y) (%)	(%)	(MV/m)	
VHB 4910	540, 75	215	239	1
VHB 4905	300, 300	200	480	2
Silicone ENP SEBS161 (5-30 wt%)	300, 300	180-30	32-133	3
Silicone ENP SEBS 217(5-30 wt%)	300, 300	245-47	22-98	3
VHB 4910 acrylic	300, 300	158	412	1
VHB4910/poly(1,6-hexanediol diacrylate)	275, 275	233	300	4
HS3	280, 0	117	128	1
Silicone-based prototype	200% ^b	18.31	96	5
TiO ₂ /SEBS	100, 100	12	27.5	6
PMMA-PnBA-PMMA	100, 100	12	4.5	7
Silicone+30 wt%TiO ₂	100, 100	11	10	8
PDMS/PHT	100, 100	7.6	8	9
polyurethane-based prototype	100% ^b	2.04	127	5
CF19-218	100, 0	63	181	1
HS3 silicone	68, 68	93	110	1
CF19-2186 silicone	45, 45	64	350	1
DC 3481(5%81-R)/20 wt%CPO	40, 40	11	27	10
CF19-2186 silicone	15, 15	33	160	1
VHB 4910 acrylic	15, 15	40	55	1

Table S1 Comparing actuated strain of 10 phr TiO_2 -PDA/NBR composite with other EAP actuators

HS3 silicone	14, 14	69	72	1
Allyl-cyano/SiR	10, 10	7	20	11
TiO ₂ /PDMS	5, 5	18	50	12
DOP/HNBR	0, 0	22	30	13
Dipole/PDMS	0, 0	14.8	1.3	14
TiO ₂ /PDMS/DMSO	0, 0	13	30	15
PANI@PDVB/PDMS	0, 0	12	54	16
PEG/PDMS	0, 0	11.5	40	17
BaTiO ₃ /CB/PDMS	0, 0	7.46	30	18
PANI-g-PolyCuPc-g-PU	0, 0	7	23	19
23 wt%PANI/P(VDF-TrFE-CTFE)	0, 0	1.5 °	9.5	20
14PANI/15PolyCuPc/85PU	0, 0	9.3 °	20	21
SEBS-MA grafted PANI	0, 0	1.4	27	22
NBR/TiO ₂ /DOP	0, 0	3.04	20	23
18.26% v/v graphite/Polyurethane	0, 0	0.037	0.75	24
5 wt% CNTs/PDMS	0, 0	4.4	1.5	25
P(VDF-TrFE)/40 wt%CuPc	0, 0	1.91	13	26
Silicone oil/PMN/PDMS	0, 0	7.4	40	27
CNT/P(VDF-TrFE-CFE)	0, 0	2.5	72	28
P(VDF-TrFE-CFE)	0, 0	4.5	130	29
LC gels	0, 0	2.1	25	30
Polyester elastomer	0, 0	11.9	15.6	31
50 phr BT-PDA/HNBR	0, 0	20	45	32
m-BT/SR4	0, 0	26	12	33

TiO ₂ /PDMS/MDSO	0, 0	13	30	34
DAN/TPU	0, 0	2.6	20	35
SeRM	0, 0	10	23	36
Azo-g-PDMS	0, 0	17	67.5	37
Carbon black/PU	0, 0	18 ^c	20	38
SiC@C-PU	0, 0	18 ^c	18	39
PBDII	0, 0	25.5	42	40
TRG/TPU	0, 0	1.8	0.25	41
TiO ₂ /ESO/HNBR	0, 0	13.6	30	42
10 phr TiO ₂ -PDA/NBR	0, 0	5.2	12.5	

^aEstimated from graphical data in cited reference, when there is no tabular was provided; ^bThe axial prestrain; ^cThe longitudinal strain.

As getting a high actuated strain under the condition of prestrain-free is a big object for researchers, we compared the actuated strain of 10 phr TiO₂-PDA/NBR composite with those of other dielectric elastomers reported in the literature under the condition of prestrain-free. It can be easily observed that the actuated strain (5.2%) of 10 phr TiO₂-PDA/NBR composite is relatively high, showing an obvious advantage in practical application.

Reference

- [1] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science, 2000, 287, 836-839.
- [2] R. Palakodeti, and M. Kessler, Mater. Lett., 2006, 60, 3437-3440.
- [3] R. Shankar, T. K. Ghosh, and R. J. Spontak, Adv. Mater., 2007, 19, 2218-2223.
- [4] S. M. Ha, W. Yuan, Q. Pei, R. Pelrine, and S. Stanford, Adv. Mater., 2006, 18,

887-891.

- [5] S. Arora, T. Ghosh, and J. Muth, Sens. Actuator, A, 2007, 136, 321-328.
- [6] H. Stoyanov, M. Kollosche, S. Risse, D. N. McCarthy, and G. Kofod, *Soft Matter*, 2011, 7, 194-202.
- [7] Y. Jang, and T. Hirai, Soft Matter, 2011, 7, 10818-10823.
- [8] F. Carpi, and D. D. Rossi, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, 835-843.
- [9] F. Carpi, G. Gallone, F. Galantini, and D. D. Rossi, *Adv. Funct. Mater.*, 2008, **18**, 235-241.
- [10] C. Löwe, X. Zhang, and G. Kovacs, Adv. Eng. Mater., 2005, 7, 361-367.
- [11] S. Risse, B. Kussmaul, H. Krüger, and G. Kofod, *Adv. Funct. Mater.*, 2012, 22, 3958-3692.
- [12] H. Liu, L. Zhang, D. Yang, Y. Yu, L. Yao, and M. Tian, *Soft Mater.*, 2013, 11, 363-370.
- [13] D. Yang, M. Tian, Y. C. Dong, H. L. Liu, Y. C. Yu, and L. Q. Zhang, Smart Mater. Struct., 2012, 21, 035017.
- [14] B. Kussmaul, S. Risse, G. Kofod, R. Waché, M. Wegener, D. N. McCarthy, H.Krüger, and R. Gerhard, *Adv. Funct. Mater.*, 2011, 21, 4589-4594.
- [15] H. Zhao, D. R. Wang, J. W. Zha, J. Zhao, and Z. M. Dang, J. Mater. Chem. A, 2013, 1, 3140-3145.
- [16] M. Molberg, D. Crespy, P. Rupper, F. Nüesch, J. A. E. Månson, C. Löwe, and D.M. Opris, *Adv. Funct. Mater.*, 2010, 20, 3280-3291.
- [17] H. Liu, L. Zhang, D. Yang, N. Ning, Y. Yu, L. Yao, B. Yan, and M. Tian, J.

- Phys. D: Appl. Phys., 2012, 45, 485303.
- [18] H. Zhao, Y. J. Xia, Z. M. Dang, J. W. Zha, and G. H. Hu, *J. Appl. Polym. Sci.*, 2013, **127**, 4440-4445.
- [19] C. Huang, and Q. M. Zhang, Adv. Mater., 2005, 17, 1153-1158.
- [20] C. Huang, and Q. M. Zhang, Adv. Funct. Mater., 2004, 14, 501-506.
- [21] C. Huang, Q. Zhang, and K. Bhattacharya, Appl. Phys. Lett., 2004, 84, 4391.
- [22] H. Stoyanov, M. Kollosche, D. N. McCarthy, and G. Kofod, *J. Mater. Chem.*, 2010, 20, 7558-7564.
- [23] H. C. Nguyen, V. T. Doan, J. K. Park, J. C. Koo, Y. Lee, J. D. Nam, and H. R. Choi, *Smart Mater. Struct.*, 2009, 18, 015006.
- [24] C. G. Cameron, R. S. Underhill, M. Rawji, and J. P. Szabo, *Proc. of SPIE.*, 2004,5385, 51-59.
- [25] L. Z. Chen, C. H. Liu, C. H. Hu, and S. S. Fan, *Appl. Phys. Lett.*, 2008, 92, 263104.
- [26] Q. M. Zhang, H. Li, M. Poh, F. Xia, Z. Y. Cheng, H. Xu, and C. Huang, *Nature*, 2002, 419, 284-287.
- [27] D. Yang, L. Zhang, H. Liu, Y. Dong, Y. Yu, and M. Tian, J. Appl. Polym. Sci.,
 2012, 125, 2196-2201.
- [28] S. Zhang, N. Zhang, C. Huang, K. Ren, and Q. Zhang, Adv. Mater., 2005, 17, 1897-1901.
- [29] F. Xia, Z. Y. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdul-Sadek, and K. D. Belfield, *Adv. Mater.*, 2002, 14, 1574-1477.

- [30] C. Huang, Q. Zhang, and A. Jakli, Adv. Funct. Mater., 2003, 13, 525-529.
- [31] D. Yang, M. Tian, Y. C. Dong, H. L. Liu, Y. C. Yu, and L. Q. Zhang, *Mater. Lett.*, 2012, **76**, 229-232.
- [32] D. Yang, M. Tian, D. Li, W. Wang, F. Ge, and L. Zhang, J. Mater. Chem. A, 2013, 1, 12276-12284.
- [33] D. Yang, F. Ge, M. Tian, N. Ning, L. Zhang, C. Zhao, K. Ito, T. Nishi, H. Wang and Y. Luan, *J. Mater. Chem. A*, 2015, **3**, 9468-9479.
- [34] H. Zhao, D. R. Wang, J. W. Zha, J. Zhao, and Z. M. Dang, J. Mater. Chem. A, 2013, 1:3140-3145.
- [35] N. Ning, B. Yan, S. Liu, Y. Yao, L. Zhang, T. W. Chan, T. Nishi and M. Tian, *Smart Mater. Struct.*, 2015, **24**, 032002.
- [36] S. Tsuchitani, T. Sunahara and H. Miki, Smart Mater. Struct., 2015, 24, 060530.
- [37] L. Zhang, D. Wang, P. Hu, J. W. Zha, F. You, S. T. Li and Z. M. Dang, J. Mater. Chem. C, 2015, 3, 4883-4889.
- [38] B. Guiffard, L. Seveyrat, G. Sebald and D. Guyomar, J. Phys. D: Appl. Phys.,
 2006, 39, 3053-3057.
- [39] B. Guiffard, D. Guyomar, L. Seveyrat, Y. Chowanek, M. Bechelany, D. Cornu and P. Miele, *J. Phys. D: Appl. Phys.*, 2009, **42**, 055503.
- [40] W. Lei, R. Wang, D. Yang, G. Hou, X. Zhou, H. Qiao, W. Wang, M. Tian and L.Zhang, *RSC Adv.*, 2015, 5, 47429-47438.
- [41] S. Liu, M. Tian, B. Yan, Y. Yao, L. Zhang, T. Nishi, and N. Ning, *Polymer*, 2015, 56, 375–384

[42] D. Yang, L. Zhang, N. Ning, D. Li, Z. Wang, T. Nishi, K. Ito, and M. Tian, RSC Adv., 2013, 3, 21896-21904.