Electronic Supplementary Information (ESI)

Sol-gel based simonkolleite nanopetals with SnO₂ nanoparticles in graphite-like amorphous carbon as efficient and reusable photocatalyst

Moumita Pal, Susanta Bera and Sunirmal Jana*

Sol-Gel Division

CSIR–Central Glass and Ceramic Research Institute (CSIR–CGCRI) 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata –700032, India *Corresponding author: Tel.: +91 33 23223303, Fax: +91 33 2473 0957 E-mail address: <u>sjana@cgcri.res.in</u>, <u>janasunirmal@hotmail.com</u> (S. Jana)

C-O-N-T-E-N-T-S

Item	Subject	Page No.			
Table S1	Details of samples	2			
Figure S1	FTIR spectra of ZSG, ZS/G, ZG and SG gels cured at 130±5°C for 2 h in air along with the precursor materials (zinc acetate dihydrate, ZA; zinc chloride, ZC; tin (IV) chloride pentahydrate, TC).	3			
Table S2	Assignment of FTIR vibrations from Figure S1.	4			
Figure S2	XRD patterns of ZSG gel cured at different temperatures under vacuum (-1 bar pressure).	5			
Proposed chemical reactions	Proposed chemical reactions for formation of different products from ZSG gel on thermal curing at different temperatures and in different atmospheres	6-7			
Table S3	Carbon content (measured by carbon determinator) in ZSV-LC, ZSV, ZSV-HC, ZV and SV samples cured at 450°C under vacuum.				
Figure S3	Plots of remnant dye concentration versus UV illumination time for successive recycles of ZSV as photocatalyst. The percent decomposition of the dye for the five successive recycles is given in Table S3.	7			
Tables S4	1 st cycle photocatalytic activity of different samples.				
	Performance of ZSV photocatalyst after successive recycles Crystallite sizes of t-SnO ₂ and r-SC in different samples measured from their XRD patterns.	8			
Figure S4	Raman spectra of ZSV-LC and ZSV-HC	9			
Figure S5	FESEM images of (a) ZS/V and (b) SV samples.	10			
Figure S6	Absorption spectra of Rh 6G dye solution in presence ZSV sample under dark condition at different times. Inset (a) shows the enlarged marked portion of the spectra whereas inset (b) displays the change of absorbance due to adsorption of the dye at different times under the dark condition without UV irradiation.	11			
Figure S7	Visible spectra, (a) and (b) of dye solution at different time of UV illumination using the photocatalysts, ZV and SV, respectively (insets show the determination of respective dye decomposition rate constant, considering first order reaction kinetics)	12			

Table S7	Photodecomposition of rhodamine 6G dye using different photocatalysts	13
Table S8	Electrochemical impedance spectroscopy (EIS) study on different	14-15
	photocatalysts	
Table S9	Surface area of some carbon coupled photocatalysts	16
Table S10	Photodecomposition rate constant (first order) of different organic	17
	compounds	
Figure S8	Absorption spectra of rhodamine 6G dye solution: (a) under UV	18
	irradiation at different times (inset shows the determination of dye	
	decomposition first order rate constant) using ZSV-LC as photocatalyst,	
	(b) adsorption behaviour of the dye for ZSV-HC at different time and	
	(c) photodegradation of the dye after 60 min of UV exposure.	
Figure S9	Remnant dye concentration versus UV illumination time for the dye	19
	solution containing different scavengers for photogenerated charges. KI	
	and TBA indicate potassium iodide and tertiary butyl alcohol,	
	respectively.	

 Table S1: Details of samples

Designation		Curing atmosphere	System	
Sol	Gel	Nanocompo site	pressure) / pure oxygen gas]	
ZSS- LC ZSS ZSS- HC	ZSG- LC ZSG ZSG- HC	ZSV-LC ZSV ZSV-HC	Under vacuum at 450°C	Simonkolleite–SnO ₂ –Carbon
ZSS	ZSG	ZSA	In air at 450°C	Zinc oxychloride–SnO ₂
ZS/S	ZS/G	ZS/V	Under vacuum at 450°C followed by curing in pure oxygen gas at 400°C	Simonkolleite–SnO ₂ –Zinc oxychloride
SS	SG	SV	Under vacuum at 450°C	SnO ₂ –Carbon
ZS	ZG	ZV	Under vacuum at 450°C	Simonkolleite-ZnO-Carbon

Note: ZS/S sol was identical Zn to Sn atomic ratio (2 : 1) as well as total equivalent oxide weight percentage (4 wt%) with ZSS sol. However, no acetylacetone was added in the ZS/S precursor sol.

Fig. S1: *FTIR* spectra of ZSG, ZS', ZG and SG gels cured at $130\pm5^{\circ}C$ for 2 h in air along with the precursor materials (zinc acetate dihydrate, ZA; zinc chloride, ZC; tin (IV) chloride pentahydrate, TC).

Vibration (cm ⁻¹)	Assignment	Reference
2925, 2856	CH ₃ , CH ₂ stretching vibrations	[1]
1656, 1610	O-H bending vibrations	[2], [3]
1564	$v_{C=0}$ vibration [actylacetonate complexed with Sn(IV)]	
1542	$v_{C=C} + v_{C=O}$ vibrations [actylacetonate complexed with Sn(IV)]	[4]
1460	Bending vibration, -CH ₂ / asymmetric stretching, -CH ₃	[5]
1438	Asymmetric bending vibration, –CH ₃	[3]
1431	-CH ₂ deformation	[6]
1377	$-OC_2H_4$ group	
1350	Symmetric bending vibration, –CH ₃ / stretching	[5]
1054	vibration, –CH ₂	[]
1254	C-O-H vibration	[7]
1233	-CH ₂ twisting	[5]
1198	Stretching vibration, –C–C–	[8]
1120	Stretching vibration, C–O–C	[5]
1060	Stretching, vibration –C–OH	[5]
1024	Stretching vibration, -C-OH / C-O-C	[3]
1010	Stretching vibration, –OCH ₃	[9]
940	Stretching vibration, –C–C–/ CO / –CH ₃ rocking vibration	[5]
890	$-OC_2H_4$ rocking vibration	[3]
835	Asymmetric bending vibration, –CH ₃	

- 1 D.R.U. Knappe, L. Li. P.A. Quinlivan and T.B. Wagner, American Water Work Association Research Foundation Research Report No. 90926, 2003.
- 2 Z. M. El-Bahy, Mod. Res. Catal., 2013, 2, 136-147.
- 3 R. L. Frost, B. J. Reddy, and E. C. Keeffe, *Transition Met. Chem.*, 2009, 34, 23-32.
- 4 R.L. Frost, W.N. Martens, P. Williams and J.T. Kloprogge, *Mineral. Mag.*, 2002, 66, 1063-1073.
- 5 T. T. Nguyen, I. M. Raupach and L. J. Janik, Clays Clay Miner., 1987, 35, 60-67.
- 6 P. Mani and S. Suresh, Rasayan J. Chem., 2009, 2, 340-344.
- 7 G.C. Trivino, O.G. Guzman and J.G. Contreras, J. Chil. Chem. Soc., 2006, 51, 989-992.
- 8 D. A. Rexalin, Cauvery Res. J., 2007, 1, 75-81.
- 9 J. H. Deshmukh and M. N. Deshpande, Chem. Environ. Pharm. Res., 2011, 2, 20-25.

Fig. S2: *XRD patterns of ZSG gel cured at different temperatures under vacuum (-1 bar pressure).* As seen from **Figure S1**, the ZSG gel cured at 400°C is semicrystalline as evident from the intensity of XRD patterns but the gel becomes highly crystalline after curing at 450°C under the vacuum. The XRD patterns are well matched with rhomboherdal simonkolleite [r-SC, JCPDS Card 07-0155] and tetragonal tin oxide (t-SnO₂, JCPDS Card 41-1445]. It is very interesting to note that on further increasing the curing temperature to 500°C, the simonkolleite fully dissociates to hexagonal zinc oxide (h-ZnO) [JCPDS Card 36-1451] as evident from the XRD patterns of the sample.

<u>Proposed chemical reactions for formation of different products from ZSG gel on</u> thermal curing at different temperatures and in different atmospheres

2-Methoxy ethanol (ROH, b.pt. 124-125°C; $R = -C_2H_4OCH_3$) is a clear, colourless liquid with ether-like odour. It is in the class of glycol ethers which can able to dissolve different types of chemical compounds and is miscible with water and other solvents [1]. Moreover, several metal/metal ions would co-ordinate/solvate with ROH [2,3]. In this work, from FTIR spectral result (Fig. S2 and Table S2) of 130°C (above the b.pt. of ROH) cured gels, it is seen that ROH is present in the gels. It is important to note that the presence of FTIR vibration at 1254 cm⁻¹ (assigned as C-O-H vibration of ROH) particularly in Zn²⁺ containing gels would indicate an interaction exist between ROH and the metal ions [3]. It is also noted that no free acetylacetone or complexed acac of Zn²⁺ is detected from FTIR spectral study of 130°C cured gels. This would be due to very low precursor sol pH (<1) [4]. However, there is an evidence of complexation of acac with Sn⁴⁺ as observed from FTIR spectra of the tin gels (ZSG, ZS/V and SV). Therefore, on the basis of FTIR study on 130°C cured gels and subsequently, the structural characterizations by XRD patterns (Fig. 1) as well FESEM (Fig. 5) and TEM (Fig. 6), Raman spectra (Fig. 2) and XPS analyses (Fig. 3) of the cured gels at different temperatures and in different atmospheres, the following chemical equations [4,6] (Eqns. 1-7) have been proposed. It is known that curing the metal-organics under vacuum can generate carbon [5] vis-à-vis metal based compounds. Therefore, the source of carbon in the vacuum cured gels as evident from Raman, XPS and HR-TEM analyses would be the organics (i.e. metal ions co-ordinated/solvated with ROH/acac) in the precursor gels.

$$SnCl_4 \xrightarrow{xROH + yH_2O; R = -C_2H_4OCH_3} Sn(OR)_x(OH)_y(Cl)_{4-x-y} + xHCl -- (1)$$

$$Sn(OR)_{x}(OH)_{y}(CI)_{4-x-y} \xrightarrow{xacac} Sn(acac)_{x}(OH)_{y}(CI)_{4-x-y} + xROH -- (2)$$

$$Sn(acac)_{x}(OH)_{y}(CI)_{4-x-y} \xrightarrow{400^{\circ}C, Vacuum} SnO_{2} + HCI + H_{2}O + C/C \text{ oxides} -- (3)$$

$$Zn(ac)_2 + (2-m-n)H_2O \xrightarrow{\text{mROH} + \text{nHCI} + (2-m-n)H_2O} Zn(OH)_{2-m-n}(OR)_m (CI)_n + 2AcH -- (4)$$

$$Zn(OH)_{2-m-n}(OR)_m(CI)_n \longrightarrow Zn_5(OH)_8 CI_2 \cdot H_2O + C/C \text{ oxides} -- (5)$$

$$Zn_{5}(OH)_{8}Cl_{2}.H_{2}O \xrightarrow{500\%}, \text{ vacuum} \Rightarrow 5ZnO + 2HCl + 4H_{2}O -- (6)$$

$$Zn(OH)_{2-m-n}(OR)_{m}(CI)_{n} \xrightarrow{450^{\circ}C, \text{ Air}} ZnO.ZnCI_{2}.H_{2}O + H_{2}O + C/C \text{ oxides} \qquad -- (7)$$

Note: x, y, m and n are positive integers; ROH = 2-methoxy ethanol; C = carbon; acac = acetylacetonate group; ac = acetate group; AcH = acetic acid, C oxides = oxides of carbon]

- 1 http://shodhganga.inflibnet.ac.in/bitstream/10603/12322/14/15_chapter%203.pdf
- 2 R. Castaneda, S. Draguta, A. Yakovenko, M. Fonari and T. Timofeeva, *Acta Crystallogr. Sect. E: Struct. Rep. Online*, 2014, **E70**, m164-m165.
- 3 R. L. Frost, B. J. Reddy, and E. C. Keeffe, Transition Met. Chem., 2009, 34, 23-32.
- 4 M. Pal, S. Bera and S. Jana, J. Sol-Gel Sci. Technol., 2013, 67, 8-17.
- 5 C. Klinke and K. Kern, Nanotechnology, 2007, 18, 215601, 4 pages.
- 6 W. Zhang and K. Yanagisawa, Chem. Mater., 2007, 19, 2329-2334.

 Table S3: Carbon content (measured by carbon determinator) of samples cured at 450°C under vacuum

Sample	Carbon content
_	(±0.5%)
ZSV-LC	9.9
ZSV	17.9
ZSV-HC	23.5
ZV	6.6
SV	17.3

Fig. S3: Plots of remnant dye concentration versus UV illumination time for successive recycles using ZSV as photocatalyst. The percent decomposition of the dye for the five successive cycles is given in Table S3.

Sample	Percent time (m	Dye decomposition						
	20	24	28	32	50	80	100	rate constant (x10 ⁻³ min ⁻¹)
ZSV	68.0	78.1	92.7	~100.0				96.1
ZS/V	27.1			37.1		63.9	84.3	14.5
ZSA	7.1				18.6	30.0	47.7	4.5
ZV	7.1				17.1	31.4	41.4	4.1
SV	5.7				10.1	20.7	30.9	1.0

Table S4: 1st cycle photocatalytic activity of different samples

 Table S5: Performance of ZSV photocatalyst after successive recycles

Cycle No.	Percentage of dye decomposition after 32 min of UV exposure
1 st	99.98
2^{nd}	96.85
3 rd	96.46
4 th	95.35
5 th	94.95

Table S6: Crystallite sizes of t-SnO₂ and r-SC in different samples measured from their XRD patterns

Sample designation	t-SnO ₂ [along (110) plane)]	r-SC [along (003) plane)]
	Crystallite size (nm)	Crystallite size (nm)
ZSV	11.6±0.5	29.4±0.8
ZS/V	7.0±0.2	33±1.3
ZSA	7.8±0.4	
SV	14.3±1.0	

Fig. S4: Raman spectra of ZSV-LC and ZSV-HC

Fig. S5: *FESEM images of (a) ZS'V and (b) SV samples.* Surface microstructure of ZS/V sample shows the presence of nanopetals (thickness, 27-33 nm), considered to be simonkolleite. The SV sample shows spherical shaped nanoclusters (size, 17 ± 2 nm).

Figure S6: Absorption spectra of Rh 6G dye solution in presence ZSV sample under dark condition at different times. Inset (a) shows the enlarged marked portion of the spectra whereas inset (b) displays the change of absorbance due to adsorption of the dye at different times under the dark condition without UV irradiation.

Fig. S7: *Visible spectra, (a) and (b) of dye solution at different time of UV illumination using the photocatalysts, ZV and SV, respectively (insets show the determination of respective dye decomposition rate constant, considering first order reaction kinetics).*

Photocatalyst	Dye concentration x 10 ⁻⁵ (M)	Time taken for complete dye decomposition (min)	Rate constant (min ⁻¹)	Reference
Ca ₂ SmBiO ₆	9.6	100	0.0348	[1]
Anatase TiO ₂ –SiO ₂ nanocomposites	2.5	90	0.0735	[2]
TiO ₂	1.5	35	0.032	[3]
ZnO nanowire/reduced graphene oxide nanocomposites	2.08	10 (98% dye decomposed)		[4]
Au-CdSe penta pod heterostructures	0.218	150	0.013	[5]
New sol-gel	1.0	32	0.096	[Present
nanocomposite: Simonkolleite nanopetals – quasi spherical tin oxide nanoparticles embedded in graphite- like amorphous carbon				work]

Table S7: Photodecomposition of rhodamine 6G dye using different photocatalysts [1-7].

- [1] S. Feraru, A.I. Borhan, P. Samoila, C. Mita, S. Cucu-Man, A.R. Iordan and M.N. Palamaru, J. *Photochem. Photobio. A Chem.*, 2015, **307-308**, 1-8.
- [2] W. Dong, Y. Sun, Q. Ma, L. Zhua, W. Hua, X. Lu, G. Zhuang, S. Zhang, Z. Guo and D. Zhao, J. Hazard. Mater. 2012, 229-230, 307-320.
- [3] A. Mills, A. Belghazi, R. H. Davies, D. Worsley and S. Morris J. Photochem. Photobio. A Chem., 1994, 79, 131-139.
- [4] C. Zhang, J. Zhang, Y. Su, M. Xu, Z. Yang and Y. Zhang, *Physica E*, 2014, 56, 251-255.
- [5] K. K. Haldar, G. Sinha, J. Lahtinen, and A. Patra, ACS Appl. Mater. Interfaces, 2012, 4, 6266-6272.

Electrochemical impedance spectroscopy (EIS) study on different photocatalysts [1-8]:

Several authors utilized EIS tool to explain the photocatalytic activity of semiconductors including carbon coupled single / mixed metal oxide nanocomposites. Among them some important works especially on carbon based composite materials are given below. The C_{60} hybridized ZnO photocatalyst with varying carbon content prepared by Fu et al. [1] also showed smallest arc radius on the EIS Nyquist plot which revealed that an effective separation of the photogenerated electron-hole pair along with a fast interfacial charge transfer to the electron donor/electron acceptor. They also observed that the order of arc radius was resembled with the order of photocatalytic activities. To explain an improved photocatalytic activity of graphene hybridized ZnO, Xu et al. [2] also took the help of EIS responses of the electrode sample. Nynquist plot of the sample shows smaller arc radius than ZnO, indicating a fast interfacial charge transfer to the electrode donor/electron acceptor. Wang et al. [3] also prepared ZnO/reduced graphene oxide (rGO)/CdS heterostructures. The authors observed that the heterostructures posses smallest arc radius in EIS plane that could be the reason for the effective separation of photoinduced electron-hole pairs and faster interfacial charge transport in the sample. In this study, they found that the rGO interlayer plays an important role in promoting photo generated charge transfer which consequences an enhancement of the charge separation efficiency. Yu et al. [4] reported efficient photocatalytic activity of TiO₂-CNT heterojunctions with an optimum thickness of TiO₂ layer due the faster electron transfer as revealed from the lowest impedance arc radius of the sample. Synthesis of a novel nanocomposite from carbon quantum dots (CQDs) and TiO₂ nanotubes (CQDs/TiO₂) was reported by Sun et al [5]. They explained an enhanced photocatalytic activity of the nanocomposite on the basis of the smaller resistance value compare to TiO_2 in EIS measurement. Wang *et al.* [6] fabricated a photocatalytically efficient composite Cu₂O/TiO₂/carbon aerogel electrode having good conductivity, shows electrochemical impedance of 17Ω . Preparation of a magnetically recyclable and high efficiency NiFe₂O₄/ MWNT (NiFe₂O₄/MWNT) photocatalyst was reported. EIS study of NiFe₂O₄ and NiFe₂O₄/MWNT(0.30) under UV irradiation showed that the arc radius of NiFe₂O₄/MWNT(0.30) is smaller than that of NiFe₂O₄, indicating that a more effective separation of photogenerated electron-hole pairs along with a faster interfacial charge transfer could occur in NiFe₂O₄/MWNT(0.30) [7]. On the other hand, Ansari et al. [8] synthesized pure SnO₂ and Ag-SnO₂ nanocomposites using an electrochemically active biofilm. The arc radius of the EIS Nyquist plots of the Ag-SnO₂ nanocomposite was found to be smaller than that of pure SnO₂ in the dark and under visible light irradiation, implying a faster interfacial charge transfer took place at the Ag-SnO₂ photocatalyst surface. The details on the rate of decomposition on the various organics using different photocatalysts are summarized in Table S8.

Table	S8:	Electrochemical	impedance	spectroscopy	(EIS)	study on	different	photocatalysts
		<i>[1-8]</i> .	-			-		

Photocatalyst system	Organics	Decomposition rate constant of organics (k,	Reference
		min ⁻¹)	
C ₆₀ hybridized ZnO	Methylene blue	0.0569	[1]
Graphene hybridized ZnO	Methylene blue	0.098	[2]
ZnO/rGO/CdS	Methylene blue	0.006	[3]
heterostructures			
TiO ₂ -CNT heterojunction	Phenol	0. 0125	[4]
Carbon QDs / TiO ₂ nanotube	Methylene blue	35% degraded after 100 min	[5]
Cu ₂ O/TiO ₂ /carbon aerogel	2,4,6-	96.3% decomposed at 5.5 h	[6]
	trichlorophenol	_	
NiFe ₂ O ₄ /MWCNT	Phenol	0.00468	[7]
Ag-SnO ₂	Methyl orange	~0.00396	[8]
	Methylene blue	~0.00483	
	4-Nitrophenol	~0.00193	
	2-Chlorophenol	~0.00186	
New sol-gel nanocomposite:	Rh 6G	0.096	[Present
Simonkolleite nanopetals –			work]
quasi spherical tin oxide			_
nanoparticles embedded in			
graphite-like amorphous			
carbon			

- [1] H. Fu, T. Xu, S. Zhu, and Y. Zhu, Environ. Sci. Technol., 2008, 42, 8064-8069.
- [2] T. Xu, L. Zhang, H. Cheng and Y. Zhu, Appl. Catal. B Environ., 2011, 101, 382-387.
- [3] Y. Wang, F. Wang and J. He, Nanoscale, 2013, 2013, 5, 11291–11297.
- [4] H. Yu, X. Quan, S. Chen, H. Zhao and Y. Zhang, J. Photochem Photobio A Chem., 2008, 200, 301-306.
- [5] M. Sun, X. Ma, Xi Chen, Y. Sun, X. Cui and Y. Lin, RSC Adv., 2014, 4, 1120-1127.
- [6] Y. Wang, Y. Zhang, G. Zhao, H. Tian, H. Shi, and T. Zhou, *ACS Appl. Mater. Interfaces*, 2012, **4**, 3965-3972.
- [7] P. Xiong, Y. Fu, L. Wang and X. Wang, Chem. Eng. J., 2012, 195-196, 149-157.
- [8] S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee and M. H. Cho, *RSC Adv.*, 2014, 4, 26013-26021.

Table S9: Surface area of some carbon coupled photocatalysts [1-4]

Description of photocatalyst	Surface area	Reference
	(m^{2}/g)	
C ₆₀ -ZnO	56.9	[1]
CoS_2 - C_{60} /TiO ₂	43.58	[2]
TiO ₂ /graphene	62.0	[3]
C_{60}/TiO_2	82.7	[4]
New sol-gel nanocomposite:	143.0	[Present
Simonkolleite nanopetals – quasi		work]
spherical tin oxide nanoparticles		
embedded in graphite-like amorphous		
carbon		

- 1 H. Fu, T. Xu, S. Zhu and Y. Zhu, Environ. Sci. Technol., 2008, 42, 8064-8069.
- 2 M. Zeda, O. Wonchun, Chinese J. Catal. 2012, 33, 1495–1501.
- 3 Z. Peining, A. S. Nair, P. Shengjie, Y. Shengyuan and S. Ramakrishna, *ACS Appl. Mater. Interfaces*, 2012, **4**, 581-585.
- 4 Y. Long, Y. Lu, Y. Huang, Y. Peng, Y. Lu, S.-Z. Kang and J. Mu, *J. Phys. Chem. C*, 2009, **113**, 13899-13905.

Fable S10: Photodecomposition rate constant	t (first order) of different	organic compounds [1-4].
--	------------------------------	--------------------------

Photocatalyst	Organic	Rate	Light source	Reference
	compound	constant, k (min ⁻¹)		
TiO ₂ nanoparticles	Acetone	~0.005	UV lamp ($\lambda =$ 365 nm, 15 W)	[1]
TiO ₂ nanofibers / nanotubes	Methylene blue	~0.029	Mercury lamp (λ = 320-400 nm, λ max = 365 nm; 160 W)	[2]
Ag and anatase TiO ₂	Methyl orange Dichlorophenol	~0.001 ~0.019	Metal halogen desk lamp (300 W)	[3]
Ag–SnO ₂ nanocomposites	Methyl orange Methylene blue 4-Nitrophenol 2-Chlorophenol	~0.004 ~0.005 ~0.002 ~0.0019	Lamp (λ> 400 nm, 400 W)	[4]
New sol-gel nanocomposite: Simonkolleite nanopetals – quasi spherical tin oxide nanoparticles embedded in graphite- like amorphous carbon	Rhodamine 6G	~0.096	UV (λ = 254 nm; 8 W)	[Present work]

- 1. J. C. Yu, J. Yu, W. Ho and L. Zhang, Chem. Commun., 2001, 1942-1943.
- 2. J. Wang, J. Hou, M. W. Ellis and A. S. Nain, New. J. Chem., 2013, 37, 571-574.
- 3. J. Virkutyte and R. S. Varma, RSC Adv., 2012, 2, 2399-2407.
- 4. S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee and M. H. Cho, RSC Adv., 2014, 4, 26013-26021.

Fig. S8: Absorption spectra of rhodamine 6G dye solution: (a) under UV irradiation at different times (inset shows the determination of dye decomposition first order rate constant) using ZSV-LC as photocatalyst, (b) adsorption behaviour of the dye for ZSV-HC at different time and (c) photodegradation of the dye after 60 min of UV exposure.

Fig. S9: Remnant dye concentration versus UV illumination time for the dye solution containing different scavengers for photogenerated charges. KI and TBA indicate potassium iodide and tertiary butyl alcohol, respectively.