SUPPORTING INFORMATION

Synthesis of Benzochromenes and Dihydrophenanthridines with Helical Motif using Garratt-Braverman and Buchwald-Hartwig Reactions

Prabuddha Bhattacharya, Kalyan Senapati, Krishna Chattopadhyay, Santi M. Mandal and Amit Basak*

Department of Chemistry, Indian Institute of Technology Kharagpur 721302 India

Table of Contents

1.	General aspects	S 3
2.	¹ H and ¹³ C NMR spectra of 4a	S4
3.	¹ H and ¹³ C NMR spectra of 5a	S5
4.	¹ H and ¹³ C NMR spectra of 6a	S6
5.	¹ H and ¹³ C NMR spectra of 7a	S7
6.	¹ H and ¹³ C NMR spectra of 8a	S8
7.	¹ H and ¹³ C NMR spectra of 9a	S9
8.	HRMS spectrum of 9a	S10
9.	¹ H and ¹³ C NMR spectra of 10a	S11
10.	¹ H and ¹³ C NMR spectra of 11a	S12
11.	¹ H and ¹³ C NMR spectra of 12a	S13
12.	¹ H and ¹³ C NMR spectra of 13a	S14
13.	¹ H and ¹³ C NMR spectra of 14a	S15
14.	HRMS spectrum of 14a	S16
15.	¹ H and ¹³ C NMR spectra of 4b	S17
16.	¹ H and ¹³ C NMR spectra of 5b	S18
17.	¹ H and ¹³ C NMR spectra of 6b	S19
18.	¹ H and ¹³ C NMR spectra of 7b	S20
19.	¹ H and ¹³ C NMR spectra of 8b	S21
20.	¹ H and ¹³ C NMR spectra of 9b	S22
21.	HRMS spectrum of 9b	S23
22.	¹ H and ¹³ C NMR spectra of 4c	S24
23.	¹ H and ¹³ C NMR spectra of 5c	S25
24.	¹ H and ¹³ C NMR spectra of 6c	S26
25.	¹ H and ¹³ C NMR spectra of 7c	S27
26.	¹ H and ¹³ C NMR spectra of 8c	S28
27.	¹ H and ¹³ C NMR spectra of 9c	S29
28.	HRMS spectrum of 9c	S30
29.	¹ H and ¹³ C NMR spectra of 10c	S31
30.	¹ H and ¹³ C NMR spectra of 11c	S32
31.	¹ H and ¹³ C NMR spectra of 12c	S33

32.	¹ H and ¹³ C NMR spectra of 13c	S34
33.	¹ H and ¹³ C NMR spectra of 14c	S35
34.	HRMS spectrum of 14c	S36
35.	¹ H and ¹³ C NMR spectra of 4d	S37
36.	¹ H and ¹³ C NMR spectra of 5d	S38
37.	¹ H and ¹³ C NMR spectra of 6d	S39
38.	¹ H and ¹³ C NMR spectra of 7d	S40
39.	¹ H and ¹³ C NMR spectra of 8d	S41
40.	¹ H and ¹³ C NMR spectra of 9 d	S42
41.	HRMS spectrum of 9d	S43
42.	¹ H and ¹³ C NMR spectra of 10d	S44
43.	¹ H and ¹³ C NMR spectra of 11d	S45
44.	¹ H and ¹³ C NMR spectra of 12d	S46
44.	¹ H and ¹³ C NMR spectra of 13d	S47
45.	¹ H and ¹³ C NMR spectra of 14d	S48
46.	HRMS spectrum of 14d	S49
47.	Crystallographic data of 9c, 14c, 14d	S50
48.	ORTEP diagrams of 9c, 14c, 14d	S51
49.	DNA binding studies	S52

EXPERIMENTAL SECTION

General Aspects: All dry reactions were conducted with oven-dried glassware under an atmosphere of nitrogen (N_2) . All common reagents were commercial grade reagents and used without further purification. The solvents were dried by standard methods and purified by distillation before use.

Silica gel (60–120 and 230–400 mesh) was used for column chromatography. TLC was performed on aluminum-backed plates coated with Silica gel 60 with F254 indicator. Locally available UV-lamp chamber and I_2 -blower were used as the TLC spot indicator. HRMS were obtained using ESI-TOF mass spectrometer

The ¹H NMR spectra were recorded at 600, 400, 200 MHz and ¹³C NMR spectra were measured at 150, 100, 50 MHz using CDCl₃. Proton and carbon spectra were referenced internally to solvent signals, using values of δ = 7.26 ppm for proton and δ = 77.2 for carbon (middle peak) in CDCl₃ and The following abbreviations are used to describe peak patterns where appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad signal, AB_q = AB quartet. All coupling constants (J) are given in Hz.

Figure S1. ¹H and ¹³C NMR spectra of 4a in CDCl₃

Figure S2. ¹H and ¹³C NMR spectra of 5a in CDCl₃

Figure S3. ¹H and ¹³C NMR spectra of 6a in CDCl₃

Figure S4. ¹H and ¹³C NMR spectra of 7a in CDCl₃

Figure S5. ¹H and ¹³C NMR spectra of 8a in CDCl₃

Figure S6. ¹H and ¹³C NMR spectra of 9a in CDCl₃

Figure S7. HRMS spectrum of 9a

Figure S8. ¹H and ¹³C NMR spectra of 10a in CDCl₃

Figure S9. ¹H and ¹³C NMR spectra of 11a in CDCl₃

Figure S10. ¹H and ¹³C NMR spectra of 12a in CDCl₃

Figure S11. ¹H and ¹³C NMR spectra of 13a in CDCl₃

Figure S12. ¹H and ¹³C NMR spectra of 14a in CDCl₃

Figure S13. HRMS spectrum of 14a

Figure S14. ¹H and ¹³C NMR spectra of 4b in CDCl₃

Figure S15. ¹H and ¹³C NMR spectra of 5b in CDCl₃

Figure S16. ¹H and ¹³C NMR spectra of 6b in CDCl₃

Figure S17. ¹H and ¹³C NMR spectra of 7b in $CDCl_3$

Figure S18. ¹H and ¹³C NMR spectra of 8b in CDCl₃

Figure S19. ¹H and ¹³C NMR spectra of 9b in CDCl₃

Figure S20. HRMS spectrum of 9b

Figure S21. ¹H and ¹³C NMR spectra of 4c (major isomer) in CDCl₃

Figure S22. ¹H and ¹³C NMR spectra of 5c (major isomer) in CDCl₃

Figure S23. ¹H and ¹³C NMR spectra of 6c (major isomer) in CDCl₃

Figure S24. ¹H and ¹³C NMR spectra of 7c (major isomer) in CDCl₃

Figure S25. ¹H and ¹³C NMR spectra of 8c (major isomer) in CDCl₃

Figure S26. ¹H and ¹³C NMR spectra of 9c (major isomer) in CDCl₃

Figure S27. HRMS spectrum of 9c

Figure S28. ¹H and ¹³C NMR spectra of 10c (major isomer) in CDCl₃

Figure S29. ¹H and ¹³C NMR spectra of 11c (major isomer) in CDCl₃

Figure S30. ¹H and ¹³C NMR spectra of 12c (major isomer) in CDCl₃

Figure S31. ¹H and ¹³C NMR spectra of 13c (major isomer) in CDCl₃

Figure S32. ¹H and ¹³C NMR spectra of 14c in CDCl₃

Figure S33. HRMS spectrum of 14c

Figure S34. ¹H and ¹³C NMR spectra of 4d in CDCl₃

Figure S35. ¹H and ¹³C NMR spectra of 5d in CDCl₃

Figure S36. ¹H and ¹³C NMR spectra of 6d in CDCl₃

Figure S37. ¹H and ¹³C NMR spectra of 7d in CDCl₃

Figure S38. ¹H and ¹³C NMR spectra of 8d in CDCl₃

Figure S39. ¹H and ¹³C NMR spectra of 9d in $CDCl_3$

Figure S40. HRMS spectrum of 9d

Figure S41. ¹H and ¹³C NMR spectra of 10d in CDCl₃

Figure S42. ¹H and ¹³C NMR spectra of 11d in CDCl₃

Figure S43. ¹H and ¹³C NMR spectra of 12d in CDCl₃

Figure S44. ¹H and ¹³C NMR spectra of 13d in CDCl₃

Figure S45. ¹H and ¹³C NMR spectra of 14d in CDCl₃

Figure S46. HRMS spectrum of 14d

Crystallographic data:

Compounds	14c	14d	9d
CCDC No.	1041545	1041544	1041542
Formula	C ₂₃ H ₂₁ NO ₄ S	C ₂₄ H ₂₃ NO ₅ S	C ₁₇ H ₁₆ O ₄
F.W.	407.47	437.49	284.30
crystal system	monoclinic	monoclinic	Triclinic
space group	P 21/c	P 21/c	<i>P</i> -1
Crystal color	White	White	White
Crystal size/mm ³	0.34x0.26x0.15	0.31x0.23x0.17	0.30x0.23x0.16
a/ Å	8.508(2)	8.243(2)	7.541(4)
b/ Å	12.301(3)	19.740(6)	8.769(5)
c/ Å	20.778(4)	12.654(4)	10.636(6)
α/\deg	90.00	90.00	98.434(18)
β/ deg	114.172(7)	103.100(8)	106.104(18)
γ/\deg	90.00	90.00	93.644(18)
V/ Å ³	1983.9(8)	2005.4(10)	664.4(6)
Ζ	4	4	2
$D_c/\mathrm{g~cm^{-3}}$	1.364	1.449	1.421
μ (mm ⁻¹)	0.193	0.200	0.101
F(000)	856	920	
<i>T</i> /K	293(2)	293(2)	293(2)
Total reflns	22705	22879	7588
R(int)	0.0383	0.0684	0.0707
Unique reflns	3489	3514	2327
Observed reflns	2694	2787	1431
Parameters	264	283	192
R_1 ; wR_2 ($I > 2\sigma(I)$)	0.0407, 0.0751	0.0479, 0.1028	0.0688, 0.1641
$\operatorname{GOF}(F^2)$	2.111	1.827	1.386
Largest diff peak and hole (e $Å^{-3}$)	0.265, -0.353	0.427, -0.493	0.346, -0.343

Figure S47

DNA binding studies:

Methods

Ethidium Bromide Displacement Assay:

Six μ g (6 μ l of 1 mg/ml solution, [DNA base pair]=3.0 μ M)¹ of DNA was prepared and diluted in Tris-Cl buffer (pH 7.2) containing 40 mM NaCl. Ethidium bromide (EtBr) displacement fluorescence assay² was employed to determine whether compounds are intercalates to DNA or not. Fluorescence emission spectra ($\lambda_{max} = 600$ nm, excitation wavelength 546 nm) were obtained at 30 °C on a Beckman fluorescence spectrophotometer. The assays were performed using different concentrations (0-2.0 μ M) of compounds in 3 mL of buffer. F/F₀ is plotted along with Y axis against the concentrations of compounds where F₀ and F are the fluorescence intensities of EB-DNA complex in presence and absence of compounds, respectively.

Figure S48

Figure S48: Relative fluorescence intensity measurement after EtBr replacement induced by synthesized compounds. A fixed concentration of DNA (6 μ l of 1 mg/ mL) and EtBr (3 μ l of 0.5 mg/ mL) was used to make a final volume of 3 mL solution. Fluorescence emission spectra (λ_{max} = 600 nm, excitation wavelength 546 nm) were recorded from each concentrations (0-2.0 μ M) of compounds. The relative fluorescence intensities are plotted as line graph show **9a** (closed square); **9b** (closed circle); **9c** (closed triangle); **9d** (closed rhombus); **14a** (closed star); **14c** (open circle) and **14d** (open triangle).

UV-Vis spectroscopy:

A Shimadzu Pharmaspec (Shimadzu Corporation, Kyoto, Japan) was used for absorption spectral studies. For this purpose, a constant concentration $(3.3 \times 10^{-3} \ \mu\text{M})$ of the DNA was treated with increasing concentration of the compounds in one cm path length matched quartz cells. The value of the binding constant (K) was obtained from spectrophotometric titration considering the DNA absorption at 260 nm according to equation $1/A-A_0 = 1/A\infty - A_0 + 1/K(A\infty - A_0) \times 1/$ [compound]³ where A_0 is the absorbance of DNA at 260 nm in the absence of compounds, $A\infty$ is the final absorbance of compound-DNA and A is the recorded absorbance at different compound concentrations. The linearity of the double reciprocal plot of $1/(A-A_0)$ versus 1/[compound] and the binding constant (K) can be estimated from the ratio of intercept to the slope⁴. The non-linear binding isotherms are also observed which was also fitted to a theoretical curve drawn according to the excluded site model of McGhee and von Hippel⁵.

References:

- 1. P.L. Felgner, Y. Barenholz, J.-P. Behr, S.H. Cheng, P. Cullis, L. Huang, J.A. Jessee, L. Seymour, F. Szoka, A.R. Thierry, E. Wagner and G. W. Hum. *Gene Ther.*, 1997, **8**, 511
- 2. B. C. Baguley and E. M. Falkenhaug, *Nucleic Acids Research*, 1978, 5, 161.
- 3. X. L. Wang, H. Chao, H. Li, X. L. Hong, Y. J. Liu, L. F. Tan and L. N. Ji, *J. Inorg. Biochem.*, 2004, **98**, 1143.
- 4. S. Sharma, S. Singh, K. M. Chandra and D. S. Pandey, J. Inorg. Biochem., 2005, 99, 458.
- 5. J. D. McGhee and P. H. von Hippel, J. Mol. Biol., 1974, 86, 469.