Supporting Information

A mild CuBr-NMO oxidative system for the coupling of anilines leading to aromatic azo compounds

Shikha Singh,^a Parul Chauhan,^a Makthala Ravi,^a Isha Taneja,^b Wahajuddin,^b Prem. P. Yadav*^a

^a Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, India ^bDivision of Pharmacokinetics and Metabolism, CSIR-Central Drug Research Institute, Lucknow-226031, India

E-mail: pp_yadav@cdri.res.in; ppy_cdri@yahoo.co.in

Contents	Page
General Details and General experimental procedure	S2
Characterization Data	S3-S7
References	S8
Copies of ¹ H and ¹³ C NMR spectra	S9-S32

1. General details

All glass apparatus were oven dried prior to use. Melting points were determined in open capillary tubes on an electrically heated block and are uncorrected. IR spectra were recorded on a Perkin-Elmer FT-IR RX1 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX-300 and Bruker Ascend-400 using CDCl₃ as solvent and tetramethylsilane as internal reference. Electrospray ionization mass spectrometry (ESI-MS) was obtained on Thermo LCQ Advantage Max Spectrometer and HRMS were recorded on Agilent 6520 Q-TOF. Column chromatography was performed over silica gel (60-120 Mesh) by using Smart flash EPCLC AI-700X YAMAZEN with minimal amount of solvent. All chemicals and reagents were obtained from Aldrich (USA), Alfa Aesar (England) and used without further purification. HPLC analysis was carried out using system consists of Shimazdu LC-10ATVp pumps and SIL-HTc auto sampler with temperature controller on a Supelco PKB C18 (4.6 X 150 mm, 5.0 µm). The system was run in gradient mode with mobile phase consisting of acetonitrile (A) and water (B) at flow rate of 1 mL/min for 25 minutes. Data acquisition was carried out on Class Vp software.

1. General Procedure and characterization data :

1.2 General procedure for preparation of symmetrical azobenzenes (2)

To a solution of Aniline **1a** (100mg, 0.81 mmol) in 2:1 CH₃CN/H₂O (6 mL), added CuBr (11.6mg, 0.081 mmol) and NMO.H₂O (109.5 mg, 0.81 mmol) and stirred the reaction mixture at rt for 30 min. Progress of reaction was monitored by TLC. After completion of reaction, the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure to give the crude product. Crude product was further purified by column chromatography over silica gel using 9:1 Hexane /Ethyl Acetate as an eluent to furnish azobenzene derivative (**2a**) 86mg (86%) as orange solid.

1.3 General procedure for preparation of unsymmetrical azobenzenes (3)

To a solution of aniline **1a** (100mg, 0.81) and **1g** (123mg, 0.97 mmol) in 2:1 CH₃CN/H₂O (6mL), added CuBr (11.6mg, 0.081 mmol) and NMO.H₂O (110mg, 0.81 mmol) under air was stirred for 1.5 h, at room temperature. Progress of reaction was monitored by TLC. After completion of reaction, the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure to give the crude product. Crude product was further purified by column chromatography over silica gel using 9:1 Hexane /ethyl acetate as an eluent. Quantitative yield of cross coupling products were carried out using system consists of Shimazdu LC-10ATVp pumps and SIL-HTc auto sampler with temperature controller to give 54% of **3b**, 19% of **2a** and 26% of **2g** by using Zorbax SB 100 C C18 column (4.6 X 150 μ m) eluted with gradient of Water:Acetonitrile.

Compound Characterization data:

1,2-bis(4-methoxyphenyl)diazene (2a)¹

Orange solid, yield 86%, mp 154.6–155.3 °C (lit.,¹ 155.4-158.7 °C) ; **FT-IR** (KBr, v_{max}/cm^{-1}) 3020, 1500, 1250, 1147, 1103, 1027, 841; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.88 (s, 6H), 6.99-7.02 (m, 4H), 7.86-7.89 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 55.6, 114.2, 124.4, 147.1, 161.6; **ESI-MS (m/z)**: 243 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₄H₁₅N₂O₂ [M+H]⁺: 243.1128; found: 243.1128.

1,2-diphenyldiazene (2b)³

Orange solid, Yield 78%, mp 67.2-68.1 °C (lit.,³ 67.3-68.2 °C) ; **FT-IR** (KBr, v_{max}/cm^{-1}) 1642, 1478, 1216, 1072, 760 ; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.46-7.55 (m, 6H), 7.92-7.94 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 122.9, 129.1, 131.0, 152.7; **ESI-MS (m/z)**: 183 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₂H₁₁N₂ [M+H]⁺: 183.0917; found: 183.0922.

1,2-bis(3-methoxyphenyl)diazene(2c)²

Red solid, Yield 83%, mp 90.2- 91.6 °C (lit., ⁹ 90-93 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 3140, 3020, 1599, 1402, 1216, 1038,763; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.90 (s, 6H), 7.03-7.06 (m, 2H), 7.41-7.46 (m, 4H), 7.55-7.57 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 55.5, 105.7, 117.1, 117.8, 129.7, 153.8, 160.4; **ESI-MS** (m/z): 243 [M+H]⁺; **HR-MS** (ESI) calcd for C₁₄H₁₅N₂O₂ [M+H]⁺: 243.1128; found: 243.1124.

1,2-bis(2-methoxyphenyl)diazene(2d)²

Red solid, Yield 84%, mp 149.7-150.2 °C (lit.,¹⁰ 150-151 °C) ; **FT-IR** (KBr, v_{max}/cm^{-1}) 3396, 927, 1597, 1479, 1324, 1256, 1039, 785; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 4.02 (s, 6H), 6.98-7.02 (m, 2H), 7.06-7.07 (m, 2H), 7.39-7.44 (m, 2H), 7.61-7.64 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 56.3, 112.6, 117.6, 120.8, 132.2, 149.7, 156.8; **ESI-MS** (m/z): 243 [M+H]⁺; **HR-MS** (ESI) calcd for C₁₄H₁₅N₂O₂ [M+H]⁺: 243.1128; found: 243.1129.

1,2-bis(4-methoxy-2-methylphenyl)diazene(2e)

Red solid, Yield 72%, mp 71.2-73.2 °C; **FT-IR** (KBr, v_{max}/cm^{-1}) 3146, 1636, 1402, 1216, 1034, 767; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 2.29 (s, 6H), 3.93 (s, 6H), 7.27 (d, *J*= 9.5 Hz, 2H), 7.40 (d, *J*= 1.6 Hz, 2H), 7.49 (dd, *J*1= 7.8 Hz, *J*2= 1.6 Hz, 2H) ; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 16.5, 55.4, 101.8, 117.6, 130.3, 130.6, 152.2, 158.3; **ESI-MS (m/z)**: 271 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₆H₁₉N₂O₂ [M+H]⁺: 271.1441; found: 271.1440.

1,2-bis(4-fluorophenyl)diazene(2f)³

Yellow solid, Yield 79%, mp 96.7-97.8 °C (lit.,³ 97.1-99.8 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 2927, 1729, 1594, 1498, 1221, 1138, 846, 763; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.17-7.21 (m, 4H), 7.90-7.94 (m, 4H); ¹³C **NMR** (100 MHz, CD₃OH) $\delta_{\rm C}$ 115.7 (d, *J*=4.5 Hz, 4XCH), 124.6 (d, *J*= 4.5 Hz, 4XCH), 149.0, 164.5 (d, *J*= 249.0 Hz, 2XC-F); **ESI-MS (m/z)**: 219 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₂H₉F₂N₂` [M+H]⁺: 219.0728; found: 219.0728.

1,2-bis(4-chlorophenyl)diazene(2g)³

Yellow solid, Yield 83%, mp 181.8-183.7 °C (lit.,³ 182.0-184.5 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 1479, 1402, 1215, 1084, 836, 758; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.47-7.51 (m, 4H), 7.84-7.88 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 124.2, 129.4, 137.2, 150.8; **ESI-MS (m/z)**: 251 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₂H₉Cl₂N₂ [M+H]⁺: 251.0137; found: 251.0123.

1,2-bis(4-bromophenyl)diazene(2h)³

Yellow solid, Yield 73%, mp 200.3-201.6 °C (lit.,³ 201.3-203.7 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 1522, 1472, 1215, 1067, 757; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.64-7.66 (m, 4H), 7.78-7.80 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 124.4, 125.8, 132.4, 151.2; **ESI-MS (m/z)**: 338 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₂H₉Br₂N₂ [M+H]⁺: 338.9127; found: 338.9129.

1,2-bis(3,4-dimethylphenyl)diazene (2i)³

Red solid, Yield 74%, mp 154.8-156.7 °C (lit.,³ 155.2-157.8 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 1602, 1403, 1215, 1069, 928, 757; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 2.33 (s, 6H), 2.35 (s, 6H), 7.26(d, *J*=7.8 Hz, 2H), 7.64-7.66 (m, 2H), 7.68 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 19.9, 120.7, 123.3, 130.2, 137.4, 139.8, 151.2; **ESI-MS (m/z)**: 239 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₆H₁₉N₂ [M+H]⁺: 239.1543; found: 239.1543.

1,2-bis(4-ethylphenyl)diazene(2j)

Red solid, Yield 90%, mp 61.2-63.2 °C; **FT-IR** (KBr, v_{max}/cm^{-1}) 3402, 2966, 2401, 1720, 1602, 1410,1286, 1216, 1071, 845, 760; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.28 (t, *J*= 7.6 Hz, 2XCH₃), 2.73 (q, *J*= 7.6 Hz, 2XCH₂), 7.33 (d, *J*= 8.5 Hz, 4H), 7.81-7.84 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 15.4, 28.8, 122.8, 128.5, 147.5, 151.0; **ESI-MS (m/z)**: 239 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₆H₁₉N₂ [M+H]⁺: 239.1543; found: 239.1548.

1,2-di([1,1'-biphenyl]-2-yl)diazene (2k)³

Yellow solid, Yield 69%, mp 132.4-133.5 °C (lit.,³ 133.5 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 3018, 2399, 1638, 1384, 1215, 1083, 928, 758; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.36-7.58 (m, 18H); ¹³**C NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 116.4, 127.3, 127.7, 128.0, 130.9, 138.9, 141.5, 149.8; **ESI-MS** (m/z): 335 [M+H]⁺; **HR-MS** (ESI) calcd for C₂₄H₁₉N₂ [M+H]⁺: 335.1543; found: 335.1540.

1,2-di(pyridin-3-yl)diazene (2l)

yellow solid, Yield 70%, 98.6-99.1 °C; **FT-IR** (KBr, v_{max}/cm^{-1}) 3685, 3019, 2400, 1634, 1525, 928, 757, 669, 626; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.46-7.48 (m, 2H), 8.16-8.18 (m, 2H), 8.72-8.74 (m, 2H), 9.22 (d, *J*= 1.9 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 124.1, 127.0, 147.6, 147.7, 152.3; **ESI-MS (m/z)**: 185 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₀H₉N₄ [M+H]⁺: 185.0822; found: 185.0821.

1,2-di(quinolin-3-yl)diazene (2m)

Orange solid, Yield 62%, 204-206 °C; **FT-IR** (KBr, v_{max}/cm^{-1}) 3399, 1644, 1582, 1403, 1216, 1070, 761, 669; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.66 (t, *J*=7.24 Hz, 2H), 7.83 (t, *J*=7.12 Hz, 2H), 8.04 (d, *J*=8.12 Hz, 2H), 8.21 (d, *J*=8.36 Hz, 2H), 8.73 (s, 2H), 9.58 (s, 2H); ¹³C **NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 128.0, 129.9, 130.9, 131.5, 145.2, 145.7, 149.7; **ESI-MS** (**m/z**): 185 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₈H₁₃N₄ [M+H]⁺: 285.1135; found: 285.1132

1-(4-methoxyphenyl)-2-phenyldiazene (3a)⁴

Red solid, Yield 45%, mp 52.0-53.4 °C (lit.,¹¹ 52.0-54.0 °C); **FT-IR** (KBr, v_{max} /cm⁻¹) 3153, 3019, 2399, 1650, 1215, 1034, 929, 759; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.89 (s,3H), 7.00-7.04 (m, 2H), 7.41-7.46 (m, 1H), 7.47-7.52 (m, 2H), 7.86-7.89 (m, 2H), 7.91-7.94 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 55.6, 114.2, 122.6, 124.7, 129.0, 130.3, 147.0, 152.8, 162.0; **ESI-MS (m/z)**: 213 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₃H₁₃N₂O [M+H]⁺: 213.1022; found: 213.1024.

1-(4-chlorophenyl)-2-(4-methoxyphenyldiazene (3b)⁵

Red solid, HPLC Yield 54%, mp 121-123 °C (lit.,⁸ 121 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 3137, 1602, 1402, 1217, 1030, 842, 768; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.89 (s, 3H), 6.99-7.03 (m, 2H), 7.45-7.47 (m, 2H), 7.81-7.84 (m, 2H), 7.89-7.93 (m, 2H); ¹³C NMR (100 MHz,

CDCl₃) $\delta_{\rm C}$ 55.6, 114.3, 123.8, 124.8, 129.2, 136.1, 146.8, 151.1, 162.3; **ESI-MS (m/z)**: 247 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₃H₁₂ClN₂O [M+H]⁺: 247.0633; found: 247.0638.

1-(4-fluorophenyl)-2-(4-methoxyphenyldiazene (3c)⁴

Yellow solid, Yield 50%, mp 72.2-73.6 °C; **FT-IR** (KBr, v_{max}/cm^{-1}) 3019, 1403, 1215, 1032, 756; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.89 (s, 3H), 6.99-7.03 (m, 2H), 7.15-7.19 (m, 2H), 7.87-7.91 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 55.6, 114.2, 115.8, (d, *J*= 22 Hz, 2XCH), 124.5 (d, *J*= 9.0 Hz, 2X CH), 124.7, 146.8, 149.3(d, *J*= 2.0 Hz, C), 162.7, 164.0 (d, *J*=249 Hz, C-F); **ESI-MS (m/z)**: 231 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₃H₁₂FN₂O [M+H]⁺: 231.0928; found: 231.0929.

1-(3,4-dimethylphenyl)-2-(4-methoxyphenyl)diazene (3d)

Yellow solid, HPLC Yield 52%, mp 74-75.5 °C; **FT-IR** (KBr, v_{max}/cm^{-1}) 3400, 1601, 1502, 1403, 1254, 1215, 839, 759, 669 ; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 2.33 (s, 3H), 2.35 (s, 3H), 3.89 (s, 3H), 6.99-7.01 (m, 2H), 7.64-7.67 (m, 3H), 7.88-7.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 19.8, 55.5, 114.2, 120.6, 123.2, 124.5, 130.2, 137.3, 139.5, 147.2, 151.2, 161.8; **ESI-MS (m/z)**: 241 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₅H₁₇N₂O [M+H]⁺: 241.1335; found: 241.1322.

1-(3-methoxyphenyl)-2-phenyldiazene (3e)⁶

Red solid, Yield 48%, mp 40.0-41.0 °C (lit.,⁶ 38-42 °C); **FT-IR** (KBr, v_{max}/cm^{-1}) 3139, 2924, 1637, 1402, 1035, 769; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.90 (s, 3H), 7.05 (dd, *J*1= 8.0 Hz, *J*2= 2.2 Hz, 1H), 7.41-7.58 (m, 6H), 7.92 (d, *J*= 6.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 55.5, 105.8, 117.1, 117.8, 122.9, 129.1, 129.8, 131.0, 152.6, 153.9, 160.4; **ESI-MS (m/z)**: 213 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₃H₁₃N₂O [M+H]⁺: 213.1022; found: 213.1024.

1-(4-chlorophenyl)-2-(3-methoxyphenyldiazene (3f)⁷

Red solid, HPLC Yield 53%, mp 70.6-71.7 °C; **FT-IR** (KBr, v_{max}/cm^{-1}) 3139, 2924, 1637, 1402, 1035, 769; ¹**H** NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.90(s, 3H), 7.05 (d, *J*= 6.4 Hz 1H), 7.41-7.56 (m, 5H), 7.87 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 55.5, 105.8, 117.3, 118.1, 124.2, 129.4, 129.8, 136.9, 150.9, 153.7, 160.4; **ESI-MS** (m/z): 247 [M+H]⁺; **HR-MS** (**ESI**) calcd for C₁₃H₁₂ClN₂O [M+H]⁺: 247.0633; found: 247.0633.

1-(4-ethylphenyl)-2-(3-methoxyphenyl)diazene (3g)

Red liquid, HPLC Yield 50%, **FT-IR** (KBr, v_{max}/cm^{-1}) 3400, 3019, 1403, 1216, 1037, 770; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.29 (t, *J*= 7.6 Hz, 3H), 2.73 (q, *J*= 7.6 Hz, 2H), 3.90 (s, 3H), 7.03 (dd, *J*1= 8.1 Hz, *J*2=2.6 Hz, 2H), 7.33-7.42 (m, 3H), 7.44-7.45 (m, 1H), 7.53-7.56 (m, 1H), 7.85 (d, *J*=8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 15.4, 28.8, 55.4, 105.7, 116.9, 117.5, 122.9, 128.5, 129.7, 147.8, 150.9, 154.0, 160.3; **ESI-MS (m/z)**: 241 [M+H]⁺; **HR-MS** (**ESI)** calcd for C₁₅H₁₇N₂O [M+H]⁺: 241.1335; found: 241.1332.

1-(2-methoxyphenyl)-2-phenyldiazene (3h)⁶

Red liquid, HPLC Yield 45%, **FT-IR** (KBr, v_{max}/cm^{-1}) 3400, 1593, 1486, 1280, 1243, 1159, 1026, 768 ; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 4.03 (s, 3H), 7.02 (t, *J*= 8.04 Hz, 1H), 7.10 (d, *J*= 7.8 Hz, 1H), 7.42-7.52 (m, 4H), 7.66 (d, *J*= 7.9 Hz, 1H), 7.91-7.92 (m, 2H) ; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 56.4, 112.8, 117.0, 120.8, 123.0, 129.0, 130.8, 132.5, 142.4, 153.2, 157.0; ESI-MS (m/z): 213 [M+H]⁺; HR-MS (ESI) calcd for C₁₃H₁₃N₂O [M+H]⁺: 213.1022; found: 213.1025.

1-(4-chlorophenyl)-2-(2-methoxyphenyldiazene (3i)

Red liquid, HPLC Yield 51%, **FT-IR** (KBr, v_{max}/cm^{-1}) 3150, 3018, 1629, 1053, 1010, 819, 757; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 4.03 (s, 3H), 6.99-7.04 (m, 1H), 7.09-7.11 (m, 1H), 7.17-7.21 (m, 1H), 7.45-7.48 (m, 2H), 7.66 (dd, *J*1= 8 Hz, *J*2= 1.7 Hz, 1H), 7.84-7.87(m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 56.4, 112.8, 116.9, 120.8, 124.2, 129.3, 132.8,136.7, 142.1, 151.5, 157.2; **ESI-MS (m/z)**: 247 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₃H₁₂ClN₂O [M+H]⁺: 247.0633; found: 247.0637.

1-(4-ethylphenyl)-2-(2-methoxyphenyldiazene (3j)

Red liquid, HPLC Yield 49%, **FT-IR** (KBr, v_{max}/cm^{-1}) 3131, 2400, 1640, 1215, 1083, 929; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.29 (t, J= 7.6 Hz, 3H), 2.7 (q, J=7.6 Hz, 2H), 4.02 (s, 3H), 7.00-7.05 (m, 1H), 7.08-7.10 (m, 1H), 7.32 (d, J= 8.6 Hz, 2H), 7.40-7.45 (m, 1H), 7.64 (dd, J1= 8.0 Hz, J2 =1.7 Hz, 1H), 7.83- 7.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 15.4, 28.8, 56.4, 117.0, 120.8, 123.0, 128.1, 128.5, 132.0, 142.5, 147.6, 151.5, 156.8; **ESI-MS (m/z)**: 241 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₅H₁₇N₂O [M+H]⁺: 241.1335; found: 241.1334.

1-(4-chlorophenyl)-2-phenyldiazene (3k)⁸

Red solid, HPLC Yield 50%, mp 90.6-91.1 °C (lit.,⁸ 91 °C) ; **FT-IR** (KBr, v_{max} /cm⁻¹) 3136, 1635, 1402, 1216, 1085, 762; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.21-7.28 (m, 1H), 7.47-7.53 (m, 4H), 7.85-7.92 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 122.9, 124.1, 129.1, 129.4,

131.3, 136.9, 151.0, 152.5; **ESI-MS (m/z)**: 217 [M+H]⁺; **HR-MS (ESI)** calcd for C₁₂H₁₀ClN₂ [M+H]⁺: 217.0527; found: 217.0533.

References:

- 1. I. Cepanec, M. Litvić, J. Udiković, I. Pogorelić and M. Lovric, *Tetrahedron.*, 2007, **63**, 5614.
- 2. W. Lu and C. Xi Tetrahedron Lett., 2008, 49, 4011.
- 3. S. Okumura, C.-H Lin, Y. Takeda and S. Minakata J. Org. Chem., 2013, 78, 12090.
- 4. C. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2010, 49, 6174.
- 5. K. Monir, M. Ghosh, S. Mishra, A. Majee and A. Hajara, Eur. J. Org. Chem., 2014, 1096.
- R. Zhao, C. Tan, Y. Xie, C. Gao, H. Liu and Y. Jiang, *Tetrahedron Lett.*, 2011, 52, 3805.
- 7. M. Barbero, I. Degani, S. Dughera, R. Fochi and P. Perracino, Synthesis, 1998, 9, 1235.
- 8. N. R. Ayyanger, Tetrahedron Lett., 1989, 30, 7253.
- 9. G. R., Srinivasa, K. Abiraj and D. C. Gowda, Tetrahedron Lett., 2003, 44, 5835.
- 10. M. Zhang, R. Zhang, A.-Q. Zhang, X. Li and H. Liang, Synth. Commun., 2009, 39, 3428.
- 11. R. Zhao, C. Tan, Y. Xie, C. Gao, H. Liu and Y. Jiang, *Tetrahedron Lett.*, 2011, **52**, 3805.

¹³C NMR Spectra of (2a) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2b**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2c**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2d**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (2e) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2f**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2g**) (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

ppm

¹³C NMR Spectra of (**2i**) (100 MHz, CDCl₃

¹³C NMR Spectra of (**2j**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2k**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2l**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**2m**) (400 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹³C NMR Spectra of (**3a**) (100 MHz, CDCl₃)

¹H NMR Spectra of (**3b**) (400 MHz, CDCl₃)

¹³C NMR Spectra of (**3b**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**3c**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**3d**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**3e**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**3f**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**3g**) (100 MHz, CDCl₃)

¹H NMR Spectra of (**3h**) (400 MHz, CDCl₃)

¹H NMR Spectra of (**3h**) (400 MHz, CDCl₃)

¹³C NMR Spectra of (**3i**) (400 MHz, CDCl₃)

¹³C NMR Spectra of (**3j**) (100 MHz, CDCl₃)

¹³C NMR Spectra of (**3k**) (100 MHz, CDCl₃)