Supporting Information

Organic-inorganic hybrid perovskites ABI₃ (A = CH₃NH₃, NH₂CHNH₂; B = Sn, Pb) as potential thermoelectric materials: A density functional evaluation

Changhoon Lee^{1,2}, Jisook Hong¹, Alessandro Stroppa³, Myung-Hwan Whangbo^{2*}, and Ji Hoon Shim^{1,4*}

- ¹ Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
- ² Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
- ³ Consiglio Nazionale delle Ricerche CNR-SPIN, I-67100 L'Aquila, Italy
- ⁴ Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea

Table S1. Atomic	positions of ($(MA)PbI_3$
------------------	----------------	-------------

atom	Х	У	Z
Pb	0.492821	0.513813	0.474085
С	0.000857	0.002167	0.899801
Ν	0.004811	0.986031	0.135257
Ι	0.49793	0.017346	0.439128
Ι	0.992556	0.506915	0.444901
Ι	0.492249	0.51508	0.967781
Н	0.019755	0.168599	0.854664
Н	0.131397	0.907481	0.835962
Н	0.848926	0.941239	0.842441
Н	0.14683	0.040081	0.198811
Н	0.882931	0.070896	0.204886
Н	0.988716	0.83003	0.187442

Table S2. Atomic positions of (MA)SnI₃

atom	Х	У	Z
Sn	0.997367	0.008319	0.911056
С	0.50034	0.520452	0.329258
Ν	0.502098	0.472681	0.563454
Ι	0.496732	0.993083	0.880919
Ι	0.997605	0.511189	0.87725
Ι	0.997356	0.021399	0.393866
Н	0.515407	0.693992	0.306589
Н	0.636028	0.437724	0.254348
Н	0.348876	0.46312	0.261031
Н	0.642867	0.524355	0.636786
Н	0.374402	0.544374	0.642577
Н	0.490923	0.30931	0.595953

atom	Х	У	Z
Pb	0.6657	0.3343	0.8401
Pb	0.0004	0.9997	0.5053
Pb	0.3334	0.6666	0.1683
С	0.3338	0.6660	0.6240
С	0.6556	0.3443	0.3563
С	0.0110	0.9891	0.9931
Ν	0.4239	0.8338	0.6333
Ν	0.1660	0.5759	0.6333
Ν	0.5663	0.1760	0.3562
Ν	0.8240	0.4337	0.3564
Ν	0.8428	0.8991	0.9867
Ν	0.1009	0.1572	0.9867
Ι	0.1490	0.8510	0.3021
Ι	0.1685	0.3355	0.3400
Ι	0.6646	0.8313	0.3402
Ι	0.8429	0.1570	0.6875
Ι	0.8155	0.6662	0.6700
Ι	0.3330	0.1847	0.6712
Ι	0.5264	0.4737	0.0517
Ι	0.4866	0.9851	0.9881
Ι	0.0151	0.5135	0.9881
Н	0.4030	0.5967	0.6070
Н	0.5853	0.4145	0.3569
Н	0.0906	0.6296	0.6506
Н	0.1030	0.4447	0.6282
Н	0.3702	0.9091	0.6505
Н	0.5551	0.8967	0.6280
Н	0.6219	0.1000	0.3529
Н	0.4350	0.1129	0.3519
Н	0.9000	0.3783	0.3531
Н	0.8870	0.5650	0.3525
Н	0.7669	0.9539	0.9782
Н	0.7798	0.7682	0.9955
Н	0.0808	0.9192	0.0040
Н	0.0461	0.2332	0.9781
Н	0.2318	0.2203	0.9954

Table S3. Atomic positions of (FA)PbI₃

atom	Х	у	Z
Sn	0.5000	0.0000	0.4561
Sn	0.5000	0.5000	0.9561
С	0.0000	0.0000	0.0048
С	0.0000	0.5000	0.5048
Ν	0.8170	0.0000	0.9369
Ν	0.8170	0.5000	0.4369
Ν	0.1830	0.0000	0.9369
Ν	0.1830	0.5000	0.4369
Ι	0.5000	0.2674	0.7065
Ι	0.5000	0.7674	0.2065
Ι	0.5000	0.7326	0.7065
Ι	0.5000	0.2326	0.2065
Ι	0.0000	0.0000	0.4939
Ι	0.0000	0.5000	0.9939
Н	0.8019	0.0000	0.8228
Н	0.8019	0.5000	0.3228
Н	0.1981	0.0000	0.8228
Н	0.1981	0.5000	0.3228
Н	0.6838	0.0000	0.0014
Н	0.6838	0.5000	0.5014
Н	0.3162	0.0000	0.0014
Н	0.3162	0.5000	0.5014
Н	0.0000	0.0000	0.1277
Н	0.0000	0.5000	0.6277

Table S4. Atomic position of $(FA)SnI_3$

Figure S1. The first Brillouin zone for (a) (MA)PbI₃, (MA)SnI₃, and (FA)SnI₃, and (b) (FA)PbI₃.

Figure S2. The calculated ZT values of (MA)PbI₃ system at various relaxation times τ .

Figure S3. The calculated ZT values of ABI_3 systems as a function of the carrier concentration at 400 K.