## Electrochemical-reduction-assisted assembly of ternary Ag nanoparticles/ polyoxometalate/ graphene nanohybrids and its activity in the electrocatalysis of oxygen reduction

Rongji Liu,<sup>a#</sup> Zhaowei Xian,<sup>b#</sup> Shuangshuang Zhang,<sup>ac</sup> Chunhua Chen,<sup>\*b</sup> Zhihua Yang,<sup>b</sup> Hang Li,<sup>d</sup> Wanquan Zheng,<sup>d</sup> Guangjin Zhang<sup>\*a</sup> and Hongbin Cao<sup>\*a</sup>

<sup>a</sup>Key laboratory of Green Process and Engineering, Chinese Academy of Sciences, 100190, Beijing, China

Email: zhanggj@ipe.ac.cn; hbcao@ipe.ac.cn

<sup>b</sup>Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, 430056, Wuhan, China

Email: cch1003@163.com

<sup>c</sup>University of Chinese Academy of Sciences, 100049, Beijing, China

<sup>d</sup>Jianghan University Institute for Interdisciplinary Research, 430056, Wuhan, China

<sup>#</sup>*These authors contributed equally to this work* 



Fig. S1 EDX analysis of 30% Ag NPs@POM/rGO nanohybrids.



Fig. S2 FT-IR spectra of the prepared 30% Ag NPs@POM/rGO nanohybrid as well as the pure  $PW_{12}$ .



Fig. S3 Typical TEM images of (a) 20% Ag NPs@POM/rGO and (b) 10% Ag NPs@POM/rGO.

| Electrode material | $E_{\rm pc}/$ V vs. RHE | $i_{\rm pc}$ / mA cm <sup>-2</sup> |  |
|--------------------|-------------------------|------------------------------------|--|
| Ag NPs@POM         | 0.55                    | -0.52                              |  |
| POM/rGO            | 0.53                    | -0.73                              |  |
| 10% Ag NPs@POM/rGO | 0.60                    | -1.17                              |  |
| 20% Ag NPs@POM/rGO | 0.71                    | -1.34                              |  |
| 30% Ag NPs@POM/rGO | 0.74                    | -1.42                              |  |

**Table S1** The main characteristics determined from the voltammograms on the five electrodes as shown in Fig. 5 in the text.

**Table S2** The numbers of electrons transferred for ORR on the five electrodes calculated from the slopes of the Koutecky–Levich plots (shown in Fig. 6, see in the text) at various potentials.

| Electron Electrode<br>number<br>Potential | Ag NPs@POM | POM/rGO | 10% Ag NPs@POM/rGO | 20% Ag NPs@POM/rGO | 30% Ag NPs@POM/rGO |
|-------------------------------------------|------------|---------|--------------------|--------------------|--------------------|
| 0.15 V vs. RHE                            | 1.90       | 2.43    | 3.82               | 3.95               | 4.20               |
| 0.25 V vs. RHE                            | 1.83       | 2.26    | 3.92               | 3.73               | 4.06               |
| 0.35 V vs. RHE                            | 1.71       | 2.05    | 4.2                | 3.57               | 3.97               |
| 0.45 V vs. RHE                            | 1.60       | 1.88    | 4.33               | 3.65               | 4.01               |
| 0.55 V vs. RHE                            | 1.52       | 1.72    | 4.28               | 3.67               | 4.04               |



**Fig. S4** Linear sweep voltammetry curves of ORR in  $O_2$ -saturated 0.1 M KOH solutions at a scan rate of 10 mV s<sup>-1</sup>. The rotation rate is 1600 rpm.



Fig. S5 Typical TEM image of 40% Ag NPs@POM/rGO.



**Fig. S6** RDE polarization curves of Ag NPs@POM/rGO with different Ag loadings at a scan rate of 10 mV s<sup>-1</sup>. The rotation rate is 1600 rpm.



**Fig. S7** RDE polarization curves of 30% Ag NPs@POM/rGO at a scan rate of 10 mV s<sup>-1</sup> before and after 2000 potential cycles in  $O_2$ -saturated 0.1 M KOH solution. The rotation rate is 1600 rpm.