Electronic Supplementary Information

Size Dependent Magnetic Hyperthermia of Octahedral Fe_3O_4 Nanoparticles

Yunbo Lv,^{†a,b} Yong Yang,^{†a} Jie Fang,^a Hanwen Zhang,^a Erwin Peng,^a Xiaoli Liu,^{a,c} Wen Xiao ^a and Jun Ding^{*a}

^a Department of Materials Science & Engineering, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore

^b NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore

^c Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China

† These authors contribute equally.

Email: msedingj@nus.edu.sg

Fig. S1 Projection of octahedral Fe_3O_4 MNPs along different direction and the definition of particle size.

Fig. S2 (a) TEM image for 16 nm spherical Fe_3O_4 MNPs with size distribution inserted. (b) SAR values of 16 nm spherical Fe_3O_4 MNPs and 22 nm octahedral Fe_3O_4 MNPs. The two kinds of MNPs have the same volume.

Fig. S3 Hysteresis loops of octahedral Fe₃O₄ MNPs measured in gel suspension.

Fig. S4 Simulated hysteresis loop for 60 nm octahedral Fe_3O_4 MNP along different directions. The angle values in the figure refer to different angle between external magnetic field and the pole direction of octahedral Fe_3O_4 MNP.

Fig. S5 Hydrodynamic size of 43 nm CTAB capped octahedral Fe_3O_4 MNPs.