Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information:

Measurement of vaporization enthalpy by isothermogravimetrical

method and prediction of the polarity for 1-alkyl-3-

methylimidazolium acetate { $[C_n mim][OAc]$ (n = 4, 6)} ionic liquids

Jie Wei, Xiaoxue Bu, Wei Guan*, Nannan Xing, Dawei Fang and Yang Wu*

Section A ¹H NMR spectra

Fig. S1 ¹H NMR spectrum $\delta_{\rm H}$ (300 MHz, DMSO) of [C₄mim][OAc]

Fig. S2 ¹H NMR spectrum $\delta_{\rm H}$ (300 MHz, DMSO) of [C₆mim][OAc]

Section B Thermal analysis

Calorimetric data were obtained with a differential scanning calorimeter DSC (Mettler-Toledo Co., Switzerland). The temperature range was -100-100 °C with heating rate of 10 °C·min⁻¹. Then samples were incubated at -100 °C for 5 min and were then heated to 100 °C.

Fig. S3 DSC thermogram of [C₄mim][OAc]

Fig. S4 DSC thermogram of [C₆mim][OAc]

Fig. S5 TG plot of [C₄mim][OAc]

Fig. S7 The influence of purge gas rate on the evaporation enthalpy: Nitrogen flow of 40, 50, 60, 70, 80, 100, 120 and 140 mL·min⁻¹ of [C₄mim][OAc] at the same temperature and hold period in the experiments.

Fig.S9 Plot of $(m_0 - m)$ vs. $(t - t_0)$ for [C₆mim][OAc] at the temperature rang from 408 K to 448 K. "408K: $m_0 - m = -4.853 \times 10^{-7} + 7.707 \times 10^{-6}(t - t_0)$, r = 0.9999, $s = 3.77 \times 10^{-7}$; "413K: $m_0 - m = -5.987 \times 10^{-6} + 1.143 \times 10^{-5}(t - t_0)$, r = 0.9998, $s = 2.51 \times 10^{-6}$; "418K: $m_0 - m = -1.813 \times 10^{-5} + 1.950 \times 10^{-5}(t - t_0)$, r = 0.9992, $s = 1.31 \times 10^{-5}$; "423K: $m_0 - m = -8.098 \times 10^{-6} + 3.158 \times 10^{-5}(t - t_0)$, r = 0.9999, $s = 2.73 \times 10^{-6}$; "428K: $m_0 - m = -5.263 \times 10^{-6} + 4.907 \times 10^{-5}(t - t_0)$, r = 0.9999, $s = 3.49 \times 10^{-6}$; "433K: $m_0 - m = -1.124 \times 10^{-5} + 7.606 \times 10^{-5}(t - t_0)$, r = 0.9999, $s = 4.25 \times 10^{-6}$; "438K: $m_0 - m = -9.766 \times 10^{-6} + 1.137 \times 10^{-4}(t - t_0)$, r = 0.9999, $s = 6.12 \times 10^{-6}$; "443K: $m_0 - m = -1.009 \times 10^{-5} + 1.648 \times 10^{-4}(t - t_0)$, r = 0.9999, $s = 5.96 \times 10^{-6}$;

Fig. S10 The ¹H NMR spectrum $\delta_{\rm H}$ (300 MHz, DMSO) of residual [C₄mim][OAc] in the crucible

Fig. S11 The ¹H NMR spectrum $\delta_{\rm H}$ (300 MHz, DMSO) of residual [C₆mim][OAc] in the crucible

Fig. S12 Schematic structure and atomic type notations of the 1-alkyl-3-methylimidazolim cation ($[C_n mim]^+$) (n = 4, 6), and acetic acid anion ($[OAc]^-$) in the AMBER force field.

Chemical name	Source	Purification method	Mass fraction purity
N-methylimidazole	ACROS	Further purification	\geq 0.998
Acetic acid	Shanghai Reagent Co. Ltd.	Further purification	\geq 0.990
1-bromobutane	Shanghai Reagent Co. Ltd.	Further purification	> 0. 985
1-chlorohexane	Shanghai Reagent Co. Ltd.	Further purification	> 0. 985
Ethyl acetate	Shanghai Reagent Co. Ltd.	No further purification	> 0.985
Acetonitrile	Shanghai Reagent Co. Ltd.	No further purification	> 0.995
Anion-exchange resin	Shanghai Daagant Ca. I td	No further purification	arapularity > 0.050
(type 717)	Shanghai Keagent Co. Ltu.	No furtiler purffication	granularity. > 0.930

Table S1The source and purity of the materials.

Table S2 The values of -dm/dt and $\ln[T^{1/2} \cdot (-dm/dt)]$ for $[C_n \min][OAc](n = 4,6)$ from 408 K to 448 K.

$T^{[a]}/K$	T^{-1}/K^{-1}	$10^{5}(-dm/dt)/g \cdot min^{-1}$	$\ln[T^{1/2} \cdot (-dm/dt)]$					
[C ₄ mim][OAc]								
408	0.002451	0.7982	- 8.733					
413	0.002421	1.074	- 8.429					
418	0.002392	1.694	- 7.968					
423	0.002364	2.687	- 7.501					
428	0.002336	4.147	- 7.061					
433	0.002309	6.549	- 6.598					
438	0.002283	9.794	- 6.190					
443	0.002257	14.03	- 5.824					
448	0.002232	19.46	- 5.492					
[C ₆ mim][OAc]								
408	0.002451	0.7707	- 8.768					
413	0.002421	1.143	- 8.368					
418	0.002392	1.950	- 7.827					
423	0.002364	3.158	- 7.339					
428	0.002336	4.907	- 6.893					
433	0.002309	7.606	- 6.449					
438	0.002283	11.37	- 6.041					
443	0.002257	16.48	- 5.664					
448	0.002232	22.42	- 5.351					

^{[a]:} the standard uncertainty (0.68 level of confidence): u(T) = 0.02 K for temperature.

The details of the new estimation values of $\Delta^{g}_{l}C_{p}{}^{o}_{m}$ based on statistical thermodynamics and some auxiliary experimental data.

Heat capacities in the liquid and gaseous state could be considered as the sum of translational, rotational, vibrational, and conformational contributions according to equations (1) and (2).

$$C_{p\ m}^{o}(g) = C_{v\ m}^{o}(\text{transl}, g) + C_{v\ m}^{o}(\text{rot}, g) + C_{v\ m}^{o}(\text{vib}, g) + C_{v\ m}^{o}(\text{conf}, g) + (C_{p\ m}^{o} - C_{v\ m}^{o})_{g}$$
(1)

$$C_{p^{\circ}m}(l) = C_{v^{\circ}m}(\text{transl}, l) + C_{v^{\circ}m}(\text{rot}, l) + C_{v^{\circ}m}(\text{vib}, l) + C_{v^{\circ}m}(\text{conf}, l) + (C_{p^{\circ}m} - C_{v^{\circ}m})_{l}$$
(2)

where $(C_{p^{o}m} - C_{v^{o}m})_{g}$ and $(C_{p^{o}m} - C_{v^{o}m})_{l}$ are the appropriate differences between isobaric and isochoric heat capacities. With assumption that vibrational contributions, as well as that equilibrium of conformers are not significantly different in the gas and in the liquid phase, we have combined equations (1) and (2) and suggested for the heat capacity difference between gas and liquid the following simplified expression:

$$\Delta^{g}_{l}C_{p\ m}^{o} = C_{v\ m}^{o}(\text{transl}, g) + C_{v\ m}^{o}(\text{rot}, g) + (C_{p\ m}^{o} - C_{v\ m}^{o})_{g} - C_{v\ m}^{o}(\text{transl}, l) - C_{v\ m}^{o}(\text{rot}, l) - (C_{p\ m}^{o} - C_{v\ m}^{o})_{l}$$
(3)

From the common statistical thermodynamics knowledge, a sum of contributions of the free rotation of a molecule and free translational motion of a molecule into the heat capacity in the ideal gas state is equal to 3 *R*. According to the oscillation theory¹ in the condensed state no free rotation of the molecule or linear motion of the molecules is possible. So the translational motion is converted into the vibrations with low frequencies and the rotation is converted into the librations or hindered rotation. The contribution of vibrations (librations) at low frequencies into the heat capacity is *R* for each degree of freedom (6 *R* for all converted rotational and translational contributions). In the case of hindered rotation this contribution will get within (1/2) *R* to *R* for each degree of freedom. In the case of highly viscous liquids with quasi-crystal structure the value of 3 *R* (vibrations) is more possible than (3/2) *R* (free motion). With the ($C_p^{o}_m - C_v^{o}_m$)_g = *R* for ideal gas systems equation (3) was simplified as follows:

$$\Delta g_{l}C_{p\,m}^{o} = (3/2) R + (3/2) R + R - 3R - 3R - (C_{p\,m}^{o} - C_{v\,m}^{o})_{l} = -2 R - (C_{p\,m}^{o} - C_{v\,m}^{o})_{l}$$
(4)

It is apparent now that the contribution $(C_{p^{\circ}m} - C_{v^{\circ}m})_{l}$ in equation (4) is the main part of the heat capacity difference, $\Delta^{g}_{l}C_{p^{\circ}m}$, vitally important for the proper temperature adjustments of vaporization enthalpies as discussed above. Fortunately, the contribution $(C_{p^{\circ}m} - C_{v^{\circ}m})_{l}$ could be easily calculated from the volumetric properties²:

$$(C_{\rm p}{}^{\rm o}{}_{\rm m} - C_{\rm v}{}^{\rm o}{}_{\rm m})_{\rm l} = (\alpha_{\rm p}{}^{2}/\kappa_{\rm T}) V_{\rm m}T$$
(5)

where α_p is the thermal expansion coefficient, K⁻¹; κ_T is the isothermal compressibility, Pa⁻¹, and V_m is the molar volume, m³·mol⁻¹. The molar volume, as well as thermal expansion coefficient is usually derived from the liquid density temperature dependence measurements. The compressibility values can be calculated from the pressure dependence of density in the isothermal conditions. But more often the κ_T value is calculated from the speed of sound $W(T, p)^3$:

$$\kappa_{\rm T} = (1/\rho) \left(1/W^2 + T\alpha_{\rm p}^{2}M/C_{\rm p\ m}^{\rm o} \right) \tag{6}$$

where ρ is the density of the IL, kg·m⁻³, and *M* is the molar mass, kg·mol⁻¹. Thus, equation (4) developed in this study in combination with equations (5) and (6) could help to assess the value of the heat capacity difference, $\Delta^{g}_{l}C_{p}^{o}_{m}$, provided that volumetric data (ρ , α_{p} , κ_{T}) for the IL of interest is available in the literature or estimated with any empirical rules available, e.g. for *W*(*T*, *p*) and $C_{p}^{o}_{m}(l)$. The speed of sound in the IL *W*(*T*, *p*) could be derived with the help of Auerbach relation 4:

$$W(m/s) = [\sigma/(6.3 \times 10^{-10} \rho)]^{2/3}$$
(7)

where values for density ρ , kg·m⁻³, and surface tension σ , J·m⁻², were available from the literature ⁵. The heat capacity of the liquid phase $C_{p\mbox{m}}^{0}$ (l) used in equation (6) for calculation of the compressibility $\kappa_{\rm T}$ could be estimated using an empirical equation⁶:

$$C_{\rm p}{}^{\rm o}{}_{\rm m} = 8.6 + 1.915 \, V_{\rm m} \tag{8}$$

where $V_{\rm m}$ is molar volume, cm³·mol⁻¹. According to above equations, $\Delta g_{\rm l} C_{\rm p^{0}m}$ of the three ILs were

calculated. The data needed in the calculation⁵ and the values of $\Delta g_l C_p o_m^o$ are listed in Table .

- 1 E.A. Moelwyn-Hughes, Physical Chemistry. New York, London, Paris: Pergamon Press, 1954.
- 2 Y.U. Paulechka, D.H. Zaitsau, G.J. Kabo. J. Mol. Liq., 2004, 115. 105-111.
- 3 D.H. Zaitsau, K. Fumino, V.N. Emel'yanenko, A.V. Yermalaeu, R. Ludwig, S.P. Verevkin. *ChemPhysChem*, 2012, 13, 1868–1876.
- 4 R. Auerbach, Experientia, 1948, 4, 473
- 5 X.X. Ma, J. Wei, Q.B. Zhang, F. Tian, Y.Y. Feng, W. Guan, Ind. Eng. Chem. Res., 2013, 52, 9490-9496.
- 6 Y.U. Paulechka, A.G. Kabo, A.V. Blokhin, G.J. Kabo, M.P. Shevelyova, J. Phys. Chem. Ref. Data, 2010, 39 033108

Table The data needed in the calculation of $\Delta g_1 C_p^{o_m} / J \cdot K^{-1} \cdot mol^{-1}$ for $[C_n mim][OAc]$ (n = 4, 6) and the result at T = 298 K.

ILs	$M/ \text{kg} \cdot \text{mol}^{-1}$	ho / kg·m ⁻³	σ /J·m ⁻²	$10^4 V_{\rm m} / {\rm m}^3 \cdot {\rm mol}^{-1}$	$10^4 a_p / { m K}^{-1}$
[C ₄ mim]	0.198264	1047.4	0.0354	1.89292	5.84
[OAc]	$10^{10} \kappa_{\rm T} / {\rm Pa^{-1}}$	$W/m \cdot s^{-1}$	$C_{p\ m}(l) / J \cdot K^{-1} \cdot mol^{-1}$	$\Delta^{\rm g}{}_{\rm l}C_{\rm p}{}^{\rm o}{}_{\rm m}$	

			(Paulechka's)	$/J \cdot K^{-1} \cdot mol^{-1}$	
	1.32068	1422.44	354.77	-53.4	
	$M/ \text{kg} \cdot \text{mol}^{-1}$	ho / kg·m ⁻³	σ /J·m ⁻²	$10^4 V_{\rm m} / {\rm m}^3 \cdot {\rm mol}^{-1}$	$10^4 \alpha_p / \mathrm{K}^{-1}$
	0.226316	1017.0	0.0331	2.22533	5.99
[C ₆ mim]	1010 / De-1	III /	$C_{p m}^{o}(l) / J \cdot K^{-1} \cdot mol^{-1}$	$\Delta^{g}_{l}C_{p}^{o}{}_{m}$	
[OAc]	$10^{10}\kappa_{\rm T}/{\rm Pa}^{11}$	<i>W</i> / m·s··	(Paulechka's)	$/J \cdot K^{-1} \cdot mol^{-1}$	
	1.1499	1387.11	417.23	-58.7	

TADIC 55 KEST	charge parameter		(n - 4, 0) and [0		uns work.	
	Atom type	Number	charge	Atom type	Number	charge
$[C_4 mim]^+$	NA	150	0.1216	Н5	175	0.2251
	CN3	16	-0.1475	H4	173	0.2192
	HC	227	0.1217	H4	190	0.2501
	CN2	351	-0.1322	СТ	25	0.1099
	H1	512	0.0916	НС	185	-0.0135
	NA	187	0.0677	СТ	28	0.1321
	CR	174	0.0075	НС	201	-0.0052
	CW	172	-0.1232	CT2	21	-0.2353
	CW	204	-0.2058	HC	168	0.0666
$[C_6 mim]^+$	NA	150	0.046955	H4	190	0.245614
	CN3	16	-0.166878	СТ	25	0.179550
	HC	227	0.127579	HC	185	-0.028410
	CN2	351	-0.085534	СТ	28	-0.006660
	H1	512	0.087393	HC	201	0.003158
	NA	187	0.052111	СТ	33	-0.046146
	CR	174	0.045611	HC	239	0.010154
	CW	172	-0.106346	СТ	35	0.166622
	CW	204	-0.187287	HC	36	-0.024930
	Н5	175	0.218411	CT2	21	-0.181556
	H4	173	0.212914	HC	168	0.045050
[OAc] ⁻	02	505	-0.865	H1	518	0.014
	С	3	0.964	02	511	-0.873
	СТ	23	-0.269			

Table S3 RESP charge parameters for $[C_n mim]^+$ (n = 4, 6) and $[OAc]^-$ ILs used in this work.

				Bonds			
	$\frac{K_r}{(\text{kJ}\cdot\text{mol}^{-1}\cdot\text{Å}^{-2})}$	<i>r</i> ₀ (Å)		$\frac{K_r}{(\text{kJ}\cdot\text{mol}^{-1}\cdot\text{Å}^{-2})}$	r ₀ (Å	.)
CT-CT	1297	1.53		CT-CT2	1297	1.53	3
CT-CN2	1297	1.53		CN3-HC	1423	1.08	
СТ-НС	1423	1.08		СТ2-НС	1423	1.08	
CN3-NA	1172	1.47	,	CN2-N1	1423	1.08	3
CW-H4	1611	1.07	,	CR-H5	1590	1.07	7
CR-NA	1674	1.33		CW-NA	1506	1.38	3
CN2-NA	1172	1.47	,	CW-CW	1715	1.34	ł
CT-C	1326	1.53		C-O2	2092	1.25	5
CT-H1	1423	1.09)				
				Angles			
	K _r (kJ·mol ⁻¹ ·Å ⁻²	θ_0 (de	g)		<i>K_r</i> (kJ·mol ⁻¹ ·Å ^{−2}	θ_0 (de	eg)
CT-CN2-H1	159	109.5	5	СТ-СТ-НС	155	109.	5
СТ-СТ2-НС	155	109.5	5	CN2-CT-HC	155	109.	5
СТ2-СТ-НС	155	109.5	5	CT-CT-CT2	167	109.	5
CT-CT-CT	167	109.5	5	CT-CT-CN2	167	109.5	
НС-СТ-НС	142	109.5	5	НС-СТ2-НС	142	109.5	
HC-CN3-NA	230	109.5	5	CT-CN2-NA	293	112.2	
H1-CN2-H1	146	109.5		HC-CN3-HC	142	109.5	
H1-CN2-NA	230	109.5		CW-NA-CN3	209	125.	7
CW-NA-CN2	209	125.7		CR-NA-CN3	209	126.	3
CR-NA-CN2	209	126.3		CW-CW-NA	502	107.	0
CR-NA-CW	502	108		NA-CR-NA	502	109.	9
H4-CW-NA	126	122.1	1	H5-CR-NA	126	125.	7
CW-CW-H4	126	130.7	7				
CT-C-O2	335	116.2	1	O2-C-O2	356	124.9	97
H1-CT-C	243	109.5	0				
				Proper Torsion			
	K_{ψ} (kJ·mol ⁻¹ ·rad ⁻²)	γ (deg)	п		K_{ψ} (kJ·mol ⁻¹ ·rad ⁻²)	γ (deg)	п
NA-CR-NA-CW	50.21	180	2	NA-CR-NA-CN3	8.37	180	2
NA-CR-NA-CN2	8.37	180	2	H5-CR-NA-CW	6.28	180	2
H5-CR-NA-CN3	6.28	180	2	H5-CR-NA-CN2	6.28	180	2
CW-CW-NA-CN3	8.37	180	2	H4-CW-NA-CN3	6.28	180	2
CW-CW-NA-CR	50.21	180	2	CW-CW-NA-CN2	8.37	180	2
H4-CW-NA-CR	8.37	180	2	H4-CW-NA-CN2	6.28	180	2
NA-CW-CW-H4	6.28	180	2	NA-CW-CW-NA	50.21	180	2
H4-CW-CW-H4	6.28	180	2	HC-CT-CT-CN2	0.67	0	3
HC-CN2-CT-CT	0.67	0	3	HC-CN3-NA-CR	0.69	0	3
H1-CN2-CT-CT	0.67	0	3	CT2-CT-CT-CN2	4.39	0	3
CT2-CT-CT-CT	1.05	0	3	CN2-CT-CT-CT	1.05	0	3

Table S4 Force field parameters for $[C_n mim][OAc]$ (n = 4, 6) ILs used in this work.

CT-CT-CT-CT	1.05	0	3	HC-CT-CT-CT	0.67	0	3
HC-CT-CT-CT2	0.67	0	3	NA-CN2-CT-CT	4.39	0	3
NA-CN2-CT-HC	0.67	0	3	H1-CN2-CT-HC	0.63	0	3
HC-CN3-NA-CW	1.00	0	3	H1-CN3-NA-CR	0.69	0	3
H1-CN2-NA-CW	1.00	0	3	H1-CN2-NA-CR	0.69	0	3
CT-CN2-NA-CW	-0.74	0	1	CT-CN2-NA-CR	-0.99	0	1
НС-СТ-СТ-НС	0.63	0	3	HC-CN3-CT-HC	0.63	0	3
HC-CN3-CT-CT	0.67	0	3	H1-CT-C-O2	0	0	2
				Improper Torsion			
	$\frac{K_{\psi}}{(\text{kJ}\cdot\text{mol}^{-1}\cdot\text{rad}^{-2})}$	γ (deg)	п		$\frac{K_{\psi}}{(\text{kJ}\cdot\text{mol}^{-1}\cdot\text{rad}^{-2})}$	γ (deg)	п
NA-NA-CR-H5	4.60	180	2	CW-NA-CW-H4	4.60	180	2
CR-CW-NA-CN3	8.37	180	2	CR-CW-NA-CN2	8.37	180	2
CT-O2-C-O2	43.93	180	2				
				Van der Waals			
	$r_i(\text{\AA})$	ε_i (kJ/m	nol)		r_i (Å)	$\varepsilon_i (kJ/n$	nol)
CR	1.908	0.359	98	NA	1.824	0.711	3
CW	1.908	0.359	8	H4	1.409	0.062	28
Н5	1.359	0.062	28	СТ	1.908	0.456	51
CN3	1.907	0.790)8	CN2	1.911	0.594	1
CT2	1.973	0.5565		H1	1.387	0.0669	
НС	1.487	0.066	59	С	1.908	0.359	8
02	1.661	0.878	86				

Table S5 Heat of vaporization for the liquid-phase $[C_n mim][OAc](n = 4, 6)$ ILs system simulated in this work and available experiments.

	$U_{\rm inter}/{\rm kJ}\cdot{\rm mol}^{-1}$	$U_{\rm ionpair}/{\rm kJ}\cdot{\rm mol}^{-1}$	$\Delta^{g}_{l}H^{o}_{m}/kJ\cdot mol^{-1}$	$\Delta^{g}_{l}H^{o}_{m}(exp.)/kJ\cdot mol^{-1}$
[C ₄ mim][OAc]	526.3331	394.5340	134.29	127.8 ± 4.3
[C ₆ mim][OAc]	534.8122	394.4713	142.84	133.1 ± 4.2