Supplementary data

Thermally stable phthalonitrile resins based on multiple oligo (aryl ether)s with phenyl-striazine moieties in backbones

Lishuai Zong, Cheng Liu, Yujie Guo, Jinyan Wang*, and Xigao Jian

State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

*Corresponding Author: E-mail: <u>wangjinyan@dlut.edu.cn</u>

Fig. S1 FT-IR spectra of PBP-Phs.

Fig. S2 1H-NMR spectra of PBP-Phs.

Fig. S3 ¹H-¹H gCOSY spectrum (CDCl₃+CF₃COOD) of PBP-Ph1, with assignments.

Fig. S4 ¹³C-NMR spectrum (CDCl₃+CF₃COOD) of PBP-Ph5, with assignments.

Fig. S5 The schematic diagram for the fabrication of the CF/Th-PBP composite laminates.

Fabrication process of the 7/T300 composites

All CF (T300) reinforced composites were fabricated via a similar procedure described as follows. 7.0 g oligomer was added to a three-necked flask and heated to melt at 250 °C (PBP-Ph1) or 280 °C (PBP-Ph3-10). 0.35 g BAPS was then added to the melted oligomer under vigorous stirring. The mixture was maintained at the melting temperature for 3-7 min, and then quenched to room temperature. The obtained B-stage resin was dissolved in 15 mL NMP. (The dipping solution of PBP-Ph15 was prepared by directly dissolving PBP-Ph15 and BAPS into NMP without undergoing B-stage resin formation.) The solution was equally poured onto sixteen plies of T300 CF weaves of 60×60×0.15 mm³. After dried at 60 °C on a horizontal heating board, all the prepregs were moved into a vacuum oven and maintained at 180 °C for 36 h and 200 °C for 1h. Then, the dried prepregs were compacted in a tight steel mold with a pressure of 2.5 MPa at 250 °C (PBP-Ph1) or 280 °C (PBP-Ph3-15) for 2 h. Then the steel mold was removed, and the laminate was cured at 250 °C for 1 h, 285 °C for 1 h, 325 °C for 3 h, 350 °C for 2 h, and 375 °C for 8 h in a muffle furnace. The thicknesses of all the finished laminates were approximately 2 mm. They should be sawed and sanded into 30×10×2 mm³ size for DMA test. The crosssectional images of the laminates are shown in Fig. S6.

Fig. S6. The cross-sectional images for T300/Th-PBP laminates monitored by SEM instrument: (a, b) T300/Th-PBP1; (c, d) T300/Th-PBP3; (e, f) T300/Th-PBP5; (g, h) T300/Th-PBP10; (i, j) T300/Th-PBP15.

Table S1 Rheologic parameters of PBP-Phs

Sample	T _m (℃) ^a	η* lowest (Pa·s) ^b	$T_{\eta^{<}100}({}^\circ\!\!\mathbb{C})^b$	t _{gel280} (min) ^c	η* ini280 (Pa·s) ^c
PBP-Ph1	211	2.7	218	9.3	7.0
PBP-Ph3	265	12.4	275	7.3	175.7
PBP-Ph5	265	34.7	316	5.9	195.8
PBP-Ph10	265	37.6	331	3.9	4414.0

a: detected by DSC; b: detected by rheometer without BAPS; c:detected by rheometer at 280° C with 5wt% BAPS.

Table S2 Thermal data of Th-PBPs.

Polymer	$T_g(^{\mathrm{o}}\mathrm{C})^{\mathrm{a}}$	$T_{5\%}(^{\circ}\mathrm{C})^{\mathrm{b}} T_{10\%}(^{\circ}\mathrm{C})$	<i>T_{max}</i> (°C)	C _{y800} ° _C (%)	C _{y900} ° _C (%)	Gel Content (%) ^c
Th-PBP1	400	538(543) ^d 570(577)	589	71(16)	71(2)	97
Th-PBP3	349	559(574) 582 (596)	596	68(21)	68(3)	97
Th-PBP5	302	562(575) 579(594)	594	61(11)	60(3)	96
Th-PBP10	298	571(575) 587(593)	593	62(0)	61(0)	95
Th-PBP15	294	582(575) 592(589)	601	61(0)	60(0)	95

^a The values was recorded on DMA at the heating rate of 3 °C/min.

 $^{\rm b}$ The values was recorded on TGA at the heating rate of 20 °C/min in N_2 or air.

^c The gel contents were measured according to the ASTM D2765-11 standard.

^d The values in the brackets were recorded on TGA under air atomosphere.

Fig. S7 DMA curves of T700/Th-PBP1 laminate.

PN	Chemical structure	T_g	<i>T</i> _{d5%,N2}	T _{d5%,air}	Refs	
precursors			(°C)	(°C)	iters.	
	PN oligomer					
5	$\sum_{N \in \mathcal{N}} o^{-\sqrt{2}} o$	ca.400	538	543	-	
5		ca.400	555	552	-	
	$ \begin{array}{c} NC \\ NC \\ NC \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				1	
xo-HEI(1)	Ar:	-	540	-	1	
xo-REI(5)		-	521	-	1	
xo-BEI(1)		-	550	-	1	
	NC O-R-O CN					
6	$R : \overset{CH_3}{\longrightarrow} \overset{CH_3}{\overset{CH_3}{\longleftarrow}} \left[\circ - \overset{O}{\longleftarrow} \overset{O}{\overset{C}{\leftarrow}} - \circ - \overset{O}{\longleftarrow} \overset{CH_3}{\overset{O}{\leftarrow}} \right]_{n}$	370	ca.500 ^f	ca.525	2	
6A	$- \underbrace{ \begin{array}{c} CF_{3} \\ CF_{3} \\ CF_{3} \end{array}} \left[- 0 - \underbrace{ \begin{array}{c} O \\ C \\ CF_{3} \end{array}} \right]_{n} - \underbrace{ \begin{array}{c} CF_{3} \\ CF_{3} \\ CF_{3} \end{array}} \right]_{n}$	>310	ca.500 ^f	-	3	
6A'		>310	ca.500 ^f	-	3	
N=2		240	506	501	4	
1	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	ca. 450	495	505	5	
la		>400	490	490	6	
1b	$- \underbrace{\overset{C}{\underset{C}{\overset{H_3}{\overset{C}}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}}}}}}}$	>400	490	495	6	

Table S3 Thermal property and processability comparison of PN resins.

PEN-t-Ph
$$= 188$$
 525 - 7
2CN-o-
PEEK $= 188$ 525 - 7
2CN-o-
PEEK $= 188$ 525 - 7
208 517 - 8
2PEN-BPh $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 18$ $= 188$
2PEN-BPh $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 18$ $= 180$
2PEN-BPh $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 160$ $= 180$ $= 180$
2PEN-BPh $= 160$ $= 16$

PI-4a

220 509 -

529

520

234

X PI-4b

14

14

-

_

CN-PA	$ + \stackrel{H}{_{N}} - \stackrel{O}{_{C}} - \stackrel{O}{} -$	325	380	-	15
	PN monomer				
HHPZ-PH		_a	514	528	16
BPh		>450	511	517	17
BAPh	NC CN CN CN CN CN CN CN	>450	ca.515 ^f	ca.545 ^f	17
6FPH	NC CF_3 $O-CN$ CN CF_3 $O-CN$ CN CN CN CR	>450	485	485	17
RPh		>400	ca.505 ^f	ca.510 ^f	18
BDS		337	436	441	19
1,6-BDCN		>465	553	549	20
BZBPH		-	478	482	21
Ι		316	450	420	22
III		-	544	390	22

350 444 437 ²³

22

>450 490 488 23

>500	512	500	23

>380	556	543	24

TDPE

Self-promoted PN monomer

`CN

20	NH ₂ O CN CN	582	527	505	25
2M	H ₂ N CN	565	524	512	25
2P	H ₂ N CN	580	528	518	25
3a		>500	517	496	26

3b		>500	506	501	26
3c		>500	531	502	26
40		450	529	520	27
4M	$H_2N \rightarrow O \rightarrow CN \\ O \rightarrow CN \\ O \rightarrow CN \\ CN $	420	525	514	27
4P		450	528	514	27
HSiPN		>450	535	558	28
MeSiPN		424	541	543	28
ViSiPN	$\overset{NC}{\underset{C}{\overset{CH_2}{\overset{C}{\underset{C}{\overset{C}{\underset{C}{\overset{C}{\underset{C}{\overset{C}{\underset{C}{\underset{C}{\overset{C}{\underset{C}{\atop;}{\underset{C}{\atop;}{\atop;}{\atop;}{\atop;}{{;}{{;}{{;}{{;}{{;}{{$	428	570	562	28
DBPA-Ph		>350	478	464	29
BIPN		>325	540	535	30
PIPN		-	516	518	31
3PN3PEOD PA		>400	516	-	32

^{*a*} The specific data was not mentioned or different to read from the relevant figures.

^f The values were roughly read from the relevant figures in order to make comparisons.

References

- 1. C. Liu, J. Y. Wang, E. C. Lin, L. S. Zong and X. G. Jian, *Polym. Degrad. Stab.*, 2012, **97**, 460-468.
- 2. M. Laskoski, D. D. Dominguez and T. M. Keller, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 4136-4143.
- 3. T. M. Keller, Chem. Mater., 1994, 6, 302-305.
- 4. D. D. Dominguez and T. M. Keller, *High Perform. Polym.*, 2006, 18, 283-304.
- 5. M. Laskoski, D. D. Dominguez and T. M. Keller, J. Polym. Sci., Part A: Polym. Chem. , 2013, **51**, 4774-4778.
- 6. M. Laskoski, D. D. Dominguez and T. M. Keller, *Polymer*, 2007, 48, 6234-6240.
- 7. Y. Zou, J. Yang, Y. Zhan, X. Yang, J. Zhong, R. Zhao and X. Liu, *J. Appl. Polym. Sci.*, 2012, **125**, 3829-3835.
- 8. H. Zhang, T. Liu, W. Yan, Y. Su, H. Yu, Y. Yang and Z. Jiang, *High Perform. Polym.*, 2014, **26**, 1007-1014.
- 9. X. Yang, J. Zhang, Y. Lei, J. Zhong and X. Liu, J. Appl. Polym. Sci., 2011, 121, 2331-2337.
- 10. R. Du, W. Li and X. Liu, Polym. Degrad. Stab., 2009, 94, 2178-2183.
- 11. T. Liu, Y. Yang, T. Wang, H. Wang, H. Zhang, Y. Su and Z. Jiang, *Polym. Eng. Sci.*, 2014, **54**, 1695-1703.
- 12. T. M. Keller, *Polymer*, 1993, **34**, 952-955.
- 13. J. Yang, X. L. Yang, Y. K. Zou, Y. Q. Zhan, R. Zhao and X. B. Liu, *J. Appl. Polym. Sci.*, 2012, **126**, 1129-1135.
- 14. K. Zeng, Y. Zou and G. Yang, Des. Monomers Polym., 2014, 17, 186-193.
- 15. K. Zeng, H. B. Hong, S. H. Zhou, D. M. Wu, P. K. Miao, Z. F. Huang and G. Yang, *Polymer*, 2009, **50**, 5002-5006.
- 16. G. P. Yu, C. Liu, X. P. Li, J. Y. Wang, X. G. Jian and C. Y. Pan, *Polym. Chem.*, 2012, **3**, 1024-1032.
- 17. S. B. Sastri and T. M. Keller, J. Polym. Sci., Part A: Polym. Chem., 1999, **37**, 2105-2111.
- 18. T. M. Keller and D. D. Dominguez, *Polymer*, 2005, 46, 4614-4618.
- 19. X. Peng, H. Sheng, H. Guo, K. Naito, X. Yu, H. Ding, X. Qu and Q. Zhang, *High Perform. Polym.*, 2014, **26**, 837-845.
- 20. F. Zhao, R. Liu, C. Kang, X. Yu, K. Naito, X. Qu and Q. Zhang, *RSC Adv.*, 2014, 4, 8383-8390.
- 21. F. Zuo and X. Liu, J. Appl. Polym. Sci., 2010, 117, 1469-1475.
- 22. Z. Brunovska, R. Lyon and H. Ishida, *Thermochim. Acta* 2000, **357–358**, 195-203.
- 23. A. Badshah, M. R. Kessler, H. Zhou and A. Hasan, Polym. Int., 2014, 63, 465-469.
- 24. H. Sheng, X. Peng, H. Guo, X. Yu, C. Tang, X. Qu and Q. Zhang, *Mater. Chem. Phys.*, 2013, **142**, 740-747.
- 25. H. Zhou, A. Badashah, Z. Luo, F. Liu and T. Zhao, *Polym. Adv. Technol.*, 2011, **22**, 1459-1465.
- 26. A. Badshah, M. R. Kessler, H. Zhou, J. H. Zaidi, S. Hameed and A. Hasan, *Polym. Chem.*, 2013, **4**, 3617-3622.
- 27. B. Amir, H. Zhou, F. Liu and H. Aurangzeb, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 5916-5920.
- 28. Z. B. Zhang, Z. Li, H. Zhou, X. K. Lin, T. Zhao, M. Y. Zhang and C. H. Xu, *J. Appl. Polym. Sci.*, 2014, **131**.

- 29. X. Q. Zou, M. Z. Xu, K. Jia and X. B. Liu, J. Appl. Polym. Sci. , 2014, 131, 41203-41209.
- 30. D. M. Wu, Y. C. Zhao, K. Zeng and G. Yang, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 4977-4982.
- 31. J. Hu, Y. Liu, Y. Jiao, S. Ji, R. Sun, P. Yuan, K. Zeng, X. Pu and G. Yang, *RSC Adv.*, 2015, **5**, 16199-16206.
- 32. P. Yuan, Y. Liu, K. Zeng and G. Yang, Des. Monomers Polym., 2015, 18, 343-349.