Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Perfluorinated Gelators for Solidifying Fluorous Solvents:

Effects of Chain Length and Molecular Chirality

Tomoko Yajima,^a Erika Tabuchi,^a Emiko Nogami^a, Akihiko Yamagishi^b and Hisako Sato*^c

- 1. DSC data of gelators.
- 2. SEM images of xelogels.
- 3. Crystallographic data from single crystal X-ray analyses.
- 4. Sol-gel transition temperature.
- 5. The effect of optical purity on sol-gel temperature.
- 6. Photographs of the inversion tests of the gels.
- 7. HPLC Chart of gelators.

^aGraduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan.

^bDepartment of Chemistry, Toho University, Funabashi, Chiba 274-8510, Japan .

^cGraduated School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan. Fax: +81-89-927-9599; Tel: +81-89-927-9590; E-mail: sato.hisako.my@ehime-u.ac.jp

1. DSC data of gerators:

The results of differential scanning calorimetry for SS-CF4, SS-CF5, SS-CF6, SS-CF9 and SS-CF10. DSC measurements were carried out with a DSC 3100SA (Buruker). Heating runs were performed at a scan rate of 5 °Cmin⁻¹.

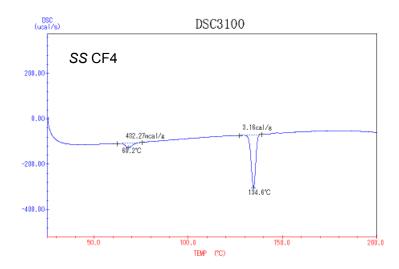


Fig. S1-1. The results of DSC for SS-CF4.

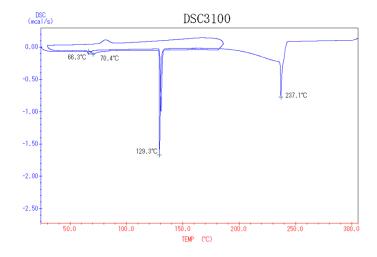


Fig. S1-2. The results of DSC for SS-CF4 (Almost the same peaks were found in 1st and 2nd Cycle. Decomposition at 237 °C)

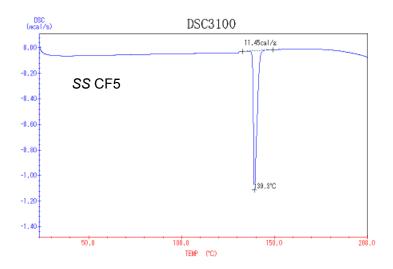


Fig. S1-3. The results of DSC for SS-CF5.

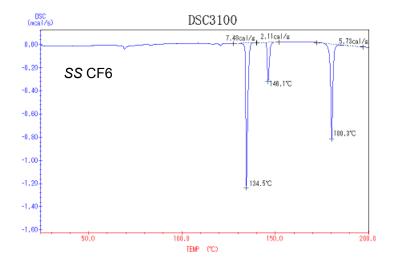


Fig. S1-4. The results of DSC for SS-CF6.

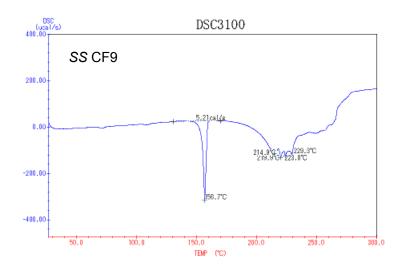


Fig. S1-5. The results of DSC for SS-CF9.

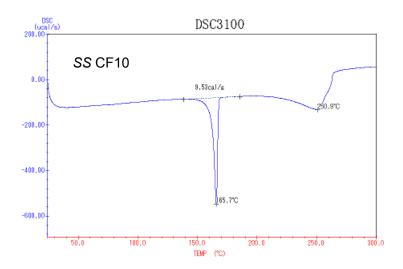


Fig. S1-6. The results of DSC for SS-CF10.

2. <u>SEM images of gelators.</u>

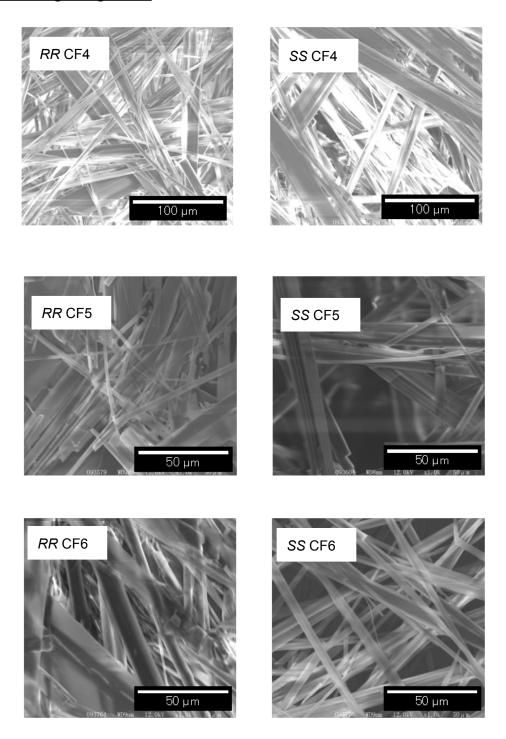


Fig. S2 The SEM images of xerogels from C₆F₆ (**CF4**, **CF5**, **CF6**).

3. Crystallographic data from single crystal X-ray analyses

Table S3. Crystallographic data of *RR*-CF4 and racemic- CF4.

Compound reference	RR-C4F	racemi-C4F
Chemical formula	C14H12F14N2O2	C14H12F14N2O2
Formula Mass	506.26	506.24
Crystal system	Monoclinic	Orthorhombic
a/Å	5.0662(7)	18.5495(14)
b/Å	16.484(2)	21.0121(16)
c/Å	10.9207(14)	9.5700(7)
α/°	90.00	90.00
β/°	100.049	90.00
γ/°	90.00	90.00
Unit cell volume/Å ³	898.0(2)	3730.0(5)
Temperature/K	93(2)	93.15
Space group	P1 21 1	Рссп
No. of formula units per unit cell, Z	2	8
Radiation type	ΜοΚα	ΜοΚα
Absorption coefficient, μ /mm ⁻¹	0.221	0.213
No. of reflections measured	4732	27365
No. of independent reflections	2671	5725
R _{int}	0.0267	0.0331
Final R_1 values $(I > 2\sigma(I))$	0.0357	0.0418
Final wR(F^2) values ($I > 2\sigma(I)$)	0.0913	0.1362
Final R ₁ values (all data)	0.0378	0.0623
Final $wR(F^2)$ values (all data)	0.0930	0.1531
Goodness of fit on F^2	1.042	1.0572
CCDC number	1022936	1040719

4. Sol-gel transition temperature.

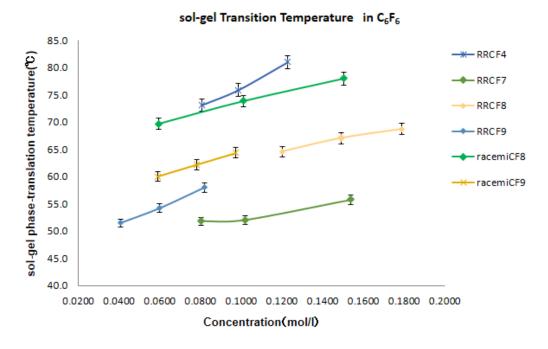


Fig. S4-1 Sol-gel transition temperature of RR-CF4, RR-CF7, RR-CF9, racemic-CF9 in C_6F_6 .

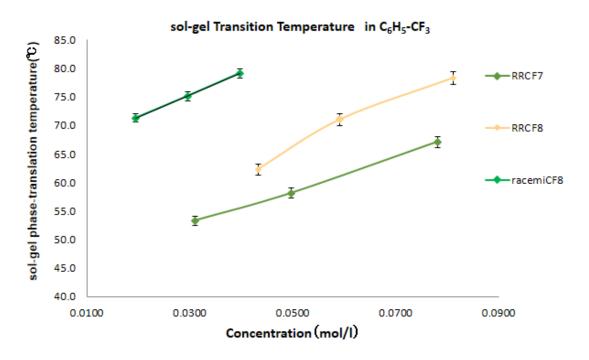


Fig. S4-2 Sol-gel transition temperature of RR-CF7, RR-CF8, racemi-CF8 in C_6H_5 -CF₃.

5. The effect of optical purity on sol-gel temperature (CF8).

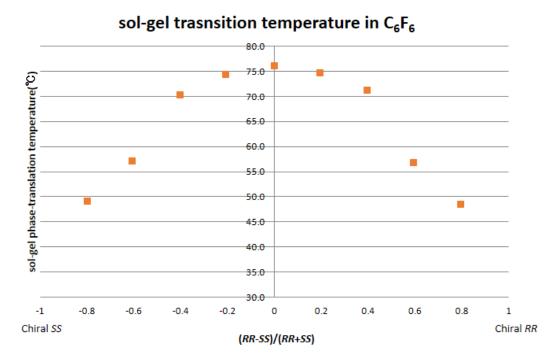


Fig. S5 The dependence of sol-gel transition temperature on the enantiomeric excess of ${\bf CF8}$ in C_6F_6 .

6. Photographs of the inversion tests of the gels.

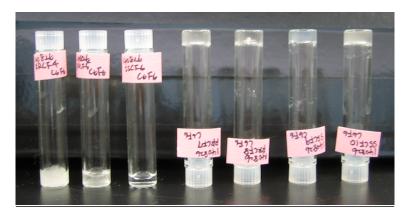


Fig. 6-1 Photographs of *RR*-**CFn** in C_6F_6 . (n = 4 to 10 from left to right).

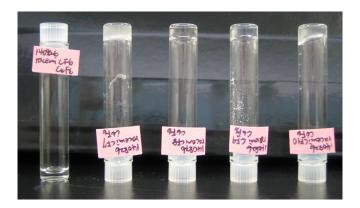


Fig. 6-2 Photographs of racemic-**CFn** in C_6F_6 . (n = 6 to 10 from left to right).

7. HPLC Chart of gelators.

The optical purity of the gelators were determined by chiral HPLC on a Daicel AD-H column. (n-hexane/isopropanol = 96/4, flow rate = 0.2 mL/min)

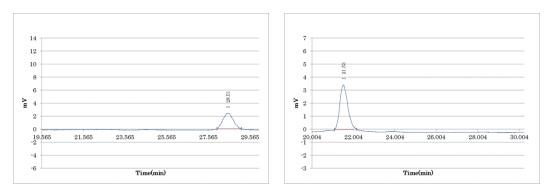


Fig. 7-1 HPLC chart of RR-CF4 (left) and SS-CF4 (right).

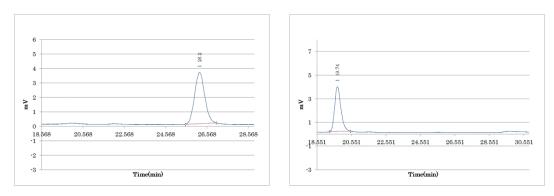


Fig. 7-2 HPLC chart of RR-CF5 (left) and SS-CF5 (right).

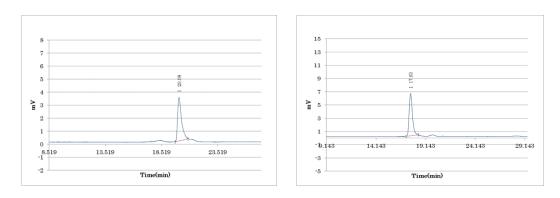
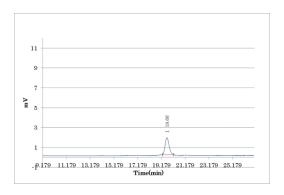



Fig. 7-3 HPLC chart of RR-CF6 (left) and SS-CF6 (right).

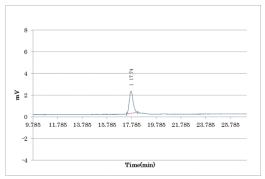
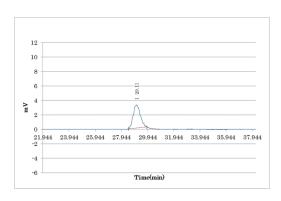



Fig. 7-4 HPLC chart of RR-CF7 (left) and SS-CF7 (right).

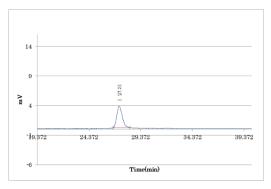
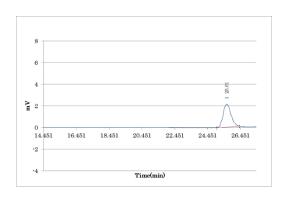



Fig. 7-5 HPLC chart of RR-CF8 (left) and SS-CF8 (right).

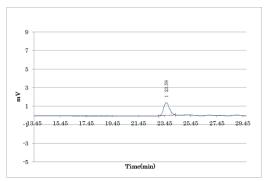
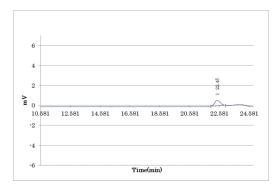



Fig. 7-6 HPLC chart of RR-CF9 (left) and SS-CF9 (right).

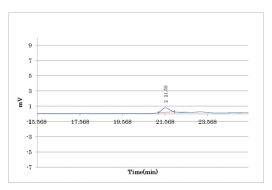


Fig. 7-7 HPLC chart of RR-CF10 (left) and SS-CF10 (right).