SUPPLEMENTARY INFORMATION

Metal ion binding properties of a bimodal triazolyl-functionalized calix[4]arene on a multi-array microcantilever system. Synthesis, fluorescence and DFT computation studies

<u>Author(s)</u>: Abdullah N. Alodhayb,^{*a*} Mona Braim,^{*a*} L.Y. Beaulieu^{*a*}, Gopikishore Valluru,^{*b*} Shofiur Rahman,^{*b*} Ahmed K. Oraby ^{*b*} and Paris E. Georghiou ^{*b**}

^a Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B3X7. E-mail: <u>lbeaulieu@mun.ca</u>

^b Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B3X7. E-mail: <u>parisg@mun.ca</u>

Table of Contents	Page
Computational study	S 2
Table S1Selected parameter distances for 2 complex with Hg2+	S2
Figure SI 1. Binding mode of host calix[4]arene-triazole 2 with Hg^{2+} ion.	S 3
Figure SI 2: Ellipsoid structures of 2 and $2 \supset Hg^{2+}$ complex	S 3
Figure SI 3: Ball-and-stick structures of 2 and $2 \supset Hg^{2+}$ complex	S 4
Figure SI 4: Spacefill structures of 2 and $2 \supset Hg^{2+}$ complex	S 4
Figure SI 5: Fluorescence spectra of 2 upon addition of Cd ²⁺ and binding	
model for 2 with Cd^{2+}	S5
Figure SI 6: Fluorescence spectra of 2 upon addition of Cd^{2+} and binding	
model for 2 with Co^+	S5
Figure SI 7: Fluorescence spectra of 2 upon addition of Pb^{2+} and binding	
model for 2 with Pb^{2+}	S5
Figure SI 8: Fluorescence spectra of 2 upon addition of Zn^{2+} and binding	
model for 2 with Zn^{2+}	S 6
Figure SI 9: Fluorescence spectra of 2 upon addition of Cu^{2+} and binding	
model for 2 with Cu^{2+}	S 6
Figure SI 10: Fluorescence spectra of 2 upon addition of Fe ²⁺ and binding	
model for 2 with Fe^{2+}	S 7
Figure SI 11: Fluorescence spectra of 2 upon addition of Ni ²⁺ and binding	
model for 2 with Ni^{2+}	S 7
Figure SI 12: Metal competitive fluorescence quenching titration spectra	
of 2 with Hg^{2+} in presence of various metals ions (M^{n+}).	S 8
Figure SI 13: ¹ H NMR, and ¹³ C-NMR spectrum of compound 2	S 9
Figure SI 14: ¹ H NMR, and ¹³ C-NMR spectrum of compound 4	S10
Figure SI 15: MS spectrum of compound 4	S11
Figure SI 16: APPI HRMS spectrum of compound 2	S12
Figure SI 17: MALDI-TOF spectrum of 2 with dithranol matrix.	S13
Figure SI 18: MALDI-TOF spectrum of 2 +Pb(ClO ₄) ₂	S14
Figure SI 19: HRMS spectrum of complex 2 with Hg^{2+}	S15
Figure SI 20: HRMS spectrum of complex 2 with Fe^{3+}	S16
References	S17

DFT Calculations:

The geometries of the molecular structures were optimized with either the B3LYP or PBE0 functionals with the LANL2DZ basis set. The DFT level of theory using the hybrid Perdew-Burke-Ernzerhof parameter free-exchange correlation functional PBE0 (PBE1PBE in the Gaussian realization)¹ with the Hay and Wadt effective core potential LANL2DZ basis set². The starting structure was generated using *SpartanPro10* with the MMFF94 method.³ The generated structures were then imported into *Gaussian-09 Revision D.01*⁴ and were geometry-optimized in the gas-phase with either the B3LYP or PBE0 functionals with the LANL2DZ basis set. The N--N distance between the triazole ring nitrogens decreases from 5.795 Å to 3.609 Å and 6.221 Å to 3.743 (Å) since the nitrogen atoms moved in towards each other after **2** complexes with Hg²⁺ (as shown in Fig. 1). The H--H distance between the triazole ring hydrogen increases from 6.079 Å to 9.918 Å, due to the hydrogen atoms moving away from each other. A ¹H NMR titration complexation study shows that the triazole ring hydrogen peak shifts downfield (+ $\Delta\delta$ = 0.45 ppm) after complexing with Hg²⁺ in solution. This is in agreement with the computational result that shows that the H--H distance between the triazole ring hydrogen increases from 6.076 Å to 9.918 Å. The calculated binding or interaction energies (IE) are -1426.8 kJ/mole using PBE0/LANL2DZ and -1385.03 KJ/mole using B3LYP with LANL2DZ basis set.

The binding energies (IE) of the complex were calculated according to equation (1):

$$IE = E_{Complex} - \Sigma(E_{Calixtriazole} + E_{Hg}^{2+} ion)$$
(1)

Table 1 The distances (Å) for the selected backbone atoms of the calix[4]arene-triazole-**2** and its complex with Hg^{2+} ion optimized at PBE0/ lanl2dz basis set in the gas phase at 298 K.

Distance (Å)	N5-N12	N ₆ -N ₁₃	H ₁₁₆ -H ₁₈₃	Hg ²⁺ -N ₆	Hg ²⁺ -N ₁₃	Hg ²⁺ -O ₄₁	Hg ²⁺ -O ₅₈
B3LYP/lanl2dz							
Free host 2	6.207	5.557	6.056	-	-	-	-
2⊃Hg ²⁺	3.643	3.782	10.078	2.322	2.323	2.403	2.424
PBE0/lanl2dz							
Free host 2	5.795	6.221	6.056	-	-	-	-
2⊃Hg ²⁺	3.609	3.743	9.918	2.309	2.299	2.471	2.367

Figure SI 1. Binding mode of host calix[4] arene-triazole 2 with Hg^{2+} ion.

Figure SI 2. Geometry-optimized (PBE0/LANL2DZ) structures of **2** with complex Hg^{2+} ion. *Left*: The free host calix[4]aren-triazole **2** (Ellipsoid); *Right:* Calix[4]aren-triazole **2** complex with Hg^{2+} ion (Ellipsoid). Colour code: carbon = drack grey and oxygen atom = red, nitrogen = blue, sulphur = yellow and Hg^{2+} = purple.

Figure SI 3. Geometry-optimized (PBE0/LANL2DZ) structures of **2** with complex Hg^{2+} ion. *Left*: The free host calix[4]aren-triazole **2** (Ball-and -stick); *Right:* Calix[4]arene-triazole **2** complex with Hg^{2+} ion (Ellipsoid). Colour code: carbon = drack grey and oxygen atom = red, nitrogen = blue, sulphur = yellow and Hg^{2+} = purple.

Figure SI 4. Geometry-optimized (PBE0/LANL2DZ) structures of **2** with complex Hg^{2+} ion. *Left*: The free host calix[4]aren-triazole **2** (Spacefill); *Right:* Calix[4]arene-triazole **2** complex with Hg^{2+} ion (Ellipsoid). Colour code: carbon = drack grey and oxygen atom = red, nitrogen = blue, sulphur = yellow and Hg^{2+} = purple.

Figure SI 5: *Left*: Fluorescence spectra of **2** upon addition of Cd^{2+} (1.1 to 15 eq) in acetonitrile/ chloroform (v/v=9:1) solutions. $\lambda_{ex} = 350$ nm. *Right*: Screen-capture output showing 1:1 binding model for **2** with Cd^{2+} , using Thordarson's⁵ method.

Figure SI 6: *Left*: Fluorescence spectra of **2** upon addition of Co^{2+} (0.8 to 8.2 eq) in acetonitrile/ chloroform (v/v=9:1) solutions. $\lambda_{ex} = 350$ nm. *Right*: Screen-capture output showing 1:1 binding model for **2** with Co^{2+} , using Thordarson's⁵ method.

Figure SI 7: *Left*: Fluorescence spectra of **2** upon addition of Pb²⁺ (0.30 to 16 eq) in acetonitrile/ chloroform (v/v=9:1) solutions. $\lambda_{ex} = 350$ nm. *Right*: Screen-capture output showing 1:1 binding model for **2** with Pb²⁺, using Thordarson's⁵ method.

Figure SI 8: *Left*: Fluorescence spectra of **2** upon addition of Zn^{2+} (0.90to 36 eq) in acetonitrile/ chloroform (v/v=9:1) solutions. $\lambda_{ex} = 350$ nm. *Right*: Screen-capture output showing 1:1 binding model for **2** with Zn^{2+} , using Thordarson's⁵ method.

Figure SI 9: *Left*: Fluorescence spectra of **2** upon addition of Cu^{2+} (1.1to 36 eq) in acetonitrile/ chloroform (v/v=9:1) solutions. $\lambda_{ex} = 350$ nm. *Right*: Screen-capture output showing 1:1 binding model for **2** with Cu^{2+} , using Thordarson's⁵ method.

Figure SI 10: *Left*: Fluorescence spectra of **2** upon addition of Fe²⁺ (0.80t to 68 eq) in acetonitrile/ chloroform (v/v=9:1) solutions. $\lambda_{ex} = 350$ nm. *Right*: Screen-capture output showing 1:1 binding model for **2** with Fe²⁺, using Thordarson's⁵ method.

Figure SI 11: *Left*: Fluorescence spectra of **2** upon addition of Ni²⁺ (0.38 to 60 eq) in acetonitrile/ chloroform (v/v= 9:1) solutions. $\lambda_{ex} = 350$ nm. *Right*: Screen-capture output showing 1:1 binding model for **2** with Ni²⁺, using Thordarson's⁵ method.

Figure SI 12: Metal competitive fluorescence quenching for the solutions of 1:1 $2 \longrightarrow M^{n+}$ to which equimolar amounts of Hg²⁺ were added in CH₃CN:CHCl₃ (9:1).

Figure SI 13: ¹H NMR, and ¹³C-NMR spectrum of compound 2

Figure SI 14: ¹H NMR, and ¹³C-NMR spectrum of compound 4

Figure SI 15: MS spectrum of compound 4

Figure SI 16: APPI HRMS spectrum of compound 2

Figure S17: MALDI-TOF spectrum of 2 with dithranol matrix.

Figure SI 18: MALDI-TOF spectrum of 2+ Pb(ClO₄)₂.

Figure SI 19: MALDI-TOF spectrum of Hg(ClO₄)₂.

Figure SI 20: MALDI-TOF spectrum of complex 2 with Fe(ClO₄)_{3.}

References:

- (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.* **1996**, **77**, 3865; (b) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.*, **1997**, **78**, 1396.
- (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys., 1985, 82, 270; (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284; (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
- 3. Initial molecular modeling calculations using the MMFF94 method were performed using the *PC Spartan'10* software from Wavefunction Inc., Irvine CA.M.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, Jr., T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,

E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene,
M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,
R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;
Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision D.01; Gaussian, Inc., Wallingford CT, 2013.

5. (a) Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305-1323. (b) http://supramolecular.org