Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Material

1. Experimental Design

Table A1. ANOVA sheet of sequential sum of squares method to screen appropriate model for each response of CS-PLHNs.

Response	Source	Sum of	df	Mean	F	<i>p</i> -value	Remark
		Squares		Square	value	Prob>F	
Particle size (Y ₁)	Mean vs Total	2.241E+006	1	2.241E+006			
	Linear vs Mean	16531.15	4	4132.79	4.36	0.0087	
	2FI vs Linear	1087.27	6	181.21	0.15	0.9865	
	Quadratic vs 2FI	21024.29	4	5256.07	111.40	< 0.0001	Suggested
	Cubic vs Quadratic	518.07	8	64.76	2.73	0.1191	
	Residual	142.48	142.48 6 23.75				
	Total	2.280E+006	29	78633.53			
	Mean vs Total	96095.27	1	96095.27			
	Linear vs Mean	336.74	4	84.19	26.04	< 0.0001	
	2FI vs Linear	19.62	6	3.27	1.02	0.4462	
Encapsulation $efficiency (X_{2})$	Quadratic vs 2FI	43.58	4	10.90	10.60	0.0004	Suggested
(-2)	Cubic vs Quadratic	8.83	8	1.10	1.19	0.4268	
	Residual	5.55	6	0.93			
	Total	96509.60	29	3327.92			
	Mean vs Total	1.89	1	1.89			
PDI (Y ₃)	Linear vs Mean	0.088	4	0.022	6.18	0.0014	
	2FI vs Linear	7.068E-003	6	1.178E-003	0.27	0.9435	
	Quadratic vs 2FI	0.076	4	0.019	110.40	< 0.0001	Suggested
	Cubic vs Quadratic	Quadratic 1.831E-003		2.289E-004	2.38	0.1530	
	Residual	5.763E-004	6	9.606E-005			
	Total	2.07	29	0.071			

df- degree of freedom; Prob>F is the significance level, *significant values at p<0.05

Response	Source	Sum of df Squares		Mean Square	F value	<i>p</i> -value Prob>F	Remark
	Linear	22727.02	20	1136.35	100.80	0.0002	
	2FI	21639.75	14	1545.70	137.11	0.0001	
Particle size (Y_1)	Quadratic	615.46	10	61.55	5.46	0.0581	Suggested
	Cubic	97.39	2	48.70	111.40	0.1002	
	Pure Error	Pure Error45.09		11.27	4.32		
	Linear	74.40	20	3.72	4.67	0.0726	
D	2FI	54.78	14	3.91	4.91	0.0679	
Encapsulation	Quadratic	11.20	10	1.12	1.40	0.3977	Suggested
efficiency (Y_2)	Cubic	2.37	2	1.18	1.48	0.3296	
	Pure Error	3.19	4	0.80			
	Linear	0.085	20	4.262E-003	106.56	0.0002	
	2FI	0.078	14	5.584E-003	139.61	0.0001	
PDI (Y ₃)	Quadratic	2.247E-003	10	2.247E-004	5.62	0.0554	Suggested
	Cubic	4.163E-004	2	2.082E-004	5.20	0.0771	
	Pure Error	1.600E-004	4	4.000E-005			

Table A2. ANOVA data for lack of fit tests applied on different response models of CS-PLHNs.

Note: *p*-value>0.05 in each of the screened model suggests non-significant lack of fit.

	Particle size (Y ₁)		Encapsulation	n efficiency	PDI		
Term			(Y ₂)	(Y ₃)		
	Coefficient	<i>p</i> -value	Coefficient	<i>p</i> -value	Coefficient	<i>p</i> -value	
Constant	+220.56	-	+29.7	-	+0.15		
X_1	+28.35	< 0.0001	+4.21	< 0.0001	+0.066	< 0.0001	
X_2	-20.58	< 0.0001	-2.80	< 0.0001	-0.049	< 0.0001	
X ₃	-6.55	0.0052	-0.69	0.0342	-0.0082	0.0469	
X_4	+10.38	0.0001	+1.43	0.0002	+0.021	< 0.0001	
X_1X_2	-1.50	0.6690	-0.25	0.6295	+0.002	0.7648	
X_1X_3	-4.05	0.2580	-0.25	0.6295	-0.0045	0.5037	
X_1X_4	+3.20	0.3673	+0.025	0.9614	+0.0017	0.7934	
X_2X_3	+7.35	0.0504	+0.85	0.1157	+0.017	0.0197	
X_2X_4	-13.57	0.0014	-2.00	0.0015	-0.037	< 0.0001	
X_3X_4	+2.15	0.5414	-0.24	0.6431	+0.006	0.3756	
X_1^2	+44.09	< 0.0001	-0.38	0.3559	+0.085	< 0.0001	
X_2^2	+28.53	< 0.0001	-2.24	< 0.0001	+0.052	< 0.0001	
X_{3}^{2}	31.39	< 0.0001	-1.40	0.0035	+0.061	< 0.0001	
X_4^2	34.78	< 0.0001	-1.34	0.0047	+0.064	< 0.0001	

Table A3 Statistical analysis of particle size (Y_1) , encapsulation efficiency (Y_2) and PDI (Y_3) of CS-PLHNs in the Box-Behnken experimental design

Response	Quadratic Model								
Variable									
	F-value	Prob>F ^{\$}	R ²	Adj. R ²	Pred. R ²	Adeq. Prec.	C.V. (%)	Lack of Fit	
Y_1	58.50	<0.0001***	0.9832	0.9664	0.9080	24.907	2.47	0.0581#	
Y ₂	27.80	<0.0001***	0.9653	0.9306	0.8323	19.227	1.76	0.3977#	
Y_2	71.04	<0.0001***	0.9861	0.9722	0.9239	26.579	5.13	0.0554#	

Table A4 Model summary statistics of the quadratic response surface models for particle size (Y_1) , encapsulation efficiency (Y_2) and PDI (Y_3) of CS-PLHNs

Adj. R², Adjusted R²; Pred. R², Predicted R²; Adeq. Prec., Adequate Precision; C.V., Coefficient of Variation [§]Prob>F is the significance level, *significant values at p<0.05, **significant values at p<0.001, *** significant values at p<0.0001, #not significant

2. In vitro hemolytic assay

Method

Blood compatibility of CS-PLHNs was evaluated by *in vitro* hemolytic assay. Fresh rat blood was used in this study. About 1.5 ml acid citrate dextrose (ACD) was added to 10 ml of fresh blood to avoid the activation of coagulating factors. Different concentrations of reconstituted lyophilized CS-PLHNs ranging from 1 to 20 mg/ml were prepared. To 1 ml of the blood sample, 1 ml of above samples were added separately. The whole samples were incubated for 48 hr with shaking in an incubator shaker at 37 °C. The samples were centrifuged at 6000 rpm for 10 min to obtain the plasma (Plasma will be red in color if hemolysis occured). The plasma were collected and analyzed by UV spectroscopy at 540 nm for measurement of released hemoglobin content. The obtained sample values were compared with that of positive control (blood + 1% triton X) and negative control (blood + normal saline). The %hemolysis was calculated by following equation.

$$\underset{\%}{Hemolysis} = \frac{(sample \ absorbance - negative \ control \ absorbance)}{(positive \ control \ absorbance - negative \ control \ absorbance)} \times 100$$

Results

Hemolytic assay was carried out to evaluate the blood compatibility of CS-PLHNs as shown in Figure 1A. The blood compatibility is a significant index for biomaterials. The biomaterial or formed CS-PLHNs upon systemic exposure in blood environment might damage the erythrocytes in certain degree or cause the formation of thrombus. In order to ensure the safety of the developed CS-PLHNs, *in-vitro* hemolytic assay was performed. The results indicates that the % hemolysis of the sample was within the range of less than 5%, the critical safe hemolytic ratio

for biomaterials according to ISO guideline (ISO/TR 7406), which indicated that the damage of the sample on the erythrocytes was negligible. Hence, based on the results, it was proved that the CS-PLHNs were biocompatible and safe for the systemic consumption. Hence, it can be used for further *in-vivo* studies. Moreover, it also suggested indirectly that CS-PLHNs were lack of any serious toxicity issue. However, further detailed toxicity studies are necessary for establishing its complete safety profile.

Figure 1A. In-vitro hemolytic assay of CS-PLHNs