Supplementary Information for

Conformational ensembles of neuromedin C reveal a progressive coil-helix transition within a binding-induced folding mechanism

Miquel Adrover^{*a,b}, Pilar Sanchis^{a,b}, Bartolomé Vilanova^{a,b}, Kris Pauwels^{c,d}, Gabriel Martorell^e and Juan Jesús Perez^f

^aInstitut Universitari d'Investigació en Ciències de la Salut (IUNICS). Departament de Química,
^uUniversitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
^bInstituto de Investigación Sanitaria de Palma (IDISPA), Ctra. Valldemossa, 79, E-07010, Palma de Mallorca, Spain.

°Structural Biology Brussels, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium.

^dVIB Structural Biology Research Centre, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium.

^eServeis Científico-Tècnics, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.

^fDepartament d'Enginyeria Química, Universitat Politecnica de Catalunya, ETSEIB, Av. Diagonal, 647; E-08028 Barcelona, Spain

*Correspondence to: Miquel Adrover, University of Balearic Islands, Phone: 0034 971 173491; Fax 0034 971 1732; e-mail: miquel.adrover@uib.es

Figure S1. Contact maps for NMC structures calculated in the presence of (A) 0%, (B) 10%, (C) 25%, (D) 40%, (E) 60% and (F) 90% d₃-TFE, and in the presence of (G) 150mM d₂₅-SDS. The geometrical restraints yielding these contact maps were taken from the ¹H, ¹H NOEs intensities using an automatic assignment process. X represents backbone-backbone interactions; \Box represents backbone-side chain interactions (filled if intraresidue); \Box represents side chain-side chain interactions (filled if intraresidue). The contact maps plots were obtained analyzing the solution structure through the Protein Structure Validation Server (PSV) (<u>http://psvs-1_4-dev.nesg.org/</u>).⁶⁹

Figure S2. Heat flow versus time profiles resulting from injection of 2μ l (the first four injections) or 1.5μ l (the other injections) aliquots of a 10mM acetate buffered solution (pH 4.0) of SDS at 35mM concentration into a 171 μ l reaction cell containing a 10mM acetate buffer solution either alone (*black*) or in presence of 42 μ M of NMC (*red*). The titration plot representing the experiment carried out on NMC has been shifted on the graph 300s towards higher injection times to have a better comparison between both plots.

Figure S3. Stern-Volmer plots for the quenching of a 0.1mM NMC buffered solution alone (•) and in presence of 50mM SDS (\Box). *F* and *F*₀ are the fluorescence intensities in the presence and absence of acrylamide, respectively (λ_{exc} 280nm; λ_{em} 356nm in • and λ_{em} 345nm in \Box).

Figure S4. Overlapping of the ¹⁵N-HSQC spectra of NMC recorded at 15°C in 10mM acetate buffer (pH 4.0) in presence of 150mM d₂₅-SDS (*blue*) and in presence of 50mM SDS (*green*).

Figure S5. Overlap of the ¹H, ¹H-NOESY spectra of NMC at different spectral regions when NMC was bound to SDS micelles (*red*) and when it was bound to d₂₅-SDS micelles (*blue*).

Figure S6. Generalized order parameters (S^2) of CyaY in 25mM Tris-HCl buffer at pH 8.3 (*black bars*) and in hen egg white (*red bars*) as a function of the residue number. S^2 values were calculated using previously published R_1 , R_2 and HET-NOE data⁵⁹ by applying the Liparizi-Szabo model-free analysis.

Table S1. Secondary structure contents of NMC at different TFE percentages estimated from the corresponding CD spectrum acquired in 10mM acetate buffer (pH 4.0) at

15°C.

% TFE	% Helix ^a	% Antiparallel β- sheet ^a	% Turns ^a	% Random Coil ^a	
0	3.4	35.6	10.7	50.3	
10	3.8	33.8	12	50.4	
25	10.6	29.6	11.2	48.6	
40	26.8	21.8	7.0	44.7	
60	37.3	17.1	3.9	41.8	
90	44.3	10.9	7.2	37.6	
SDS	36.8	23.2	0.0	40.0	
^a The secondary structure contents were estimated by using the BeStSel on-line platform (http://bestsel.elte.hu/)					

Residue	Model	χ^2	S^2	τ _e , ps
2	2	2.76	0.23±0.03	80±16
3	2	0.19	0.37 ± 0.03	173±31
4	2	0.055	0.47 ± 0.02	137±22
5	2	0.082	0.62 ± 0.01	22±7
6	2	0.117	0.48 ± 0.02	80±9
7	2	0.054	$0.54{\pm}0.01$	82±10
8	2	0.178	0.53 ± 0.02	50±9
9	2	0.093	0.41 ± 0.02	60±7
10	2	0.651	0.37 ± 0.02	140±15

Table S2. Residue-specific dynamics parameters calculated from the Lipari-Szabo model-free formalism at 14.1T for NMC in 10mM acetate buffer at pH 4.0 and 15°C.

 Table S3. Residue-specific dynamics parameters calculated from the Lipari-Szabo model-free formalism at 14.1T and 15°C for a NMC solution containing 60% TFE and 40% acetate buffer (10mM) at pH 4.0.

Residue	Model	χ^2	S^2	τ _e , ps	R _{ex} , s ⁻¹	$S^2{}_{ m f}{}^{ m a}$
3	4	0.14	0.68±0.15	510±110	3.65±0.67	-
4	2	0.31	$0.74{\pm}0.01$	112±15	-	-
5	2	0.83	0.79 ± 0.02	71±16	-	-
6	2	1.58	0.68 ± 0.01	98±12	-	-
7	2	2.85	0.75 ± 0.01	59±12	-	-
8	2	0.006	0.75 ± 0.02	99±17	-	-
9	5	0.000	0.43 ± 0.10	1190±322	-	0.89 ± 0.02
10	5	0.000	0.42 ± 0.06	694±167	-	0.85 ± 0.02
$^{a}S^{2} = S^{2}_{f} \cdot S^{2}$	s					

Residue	Model	χ^2	S^2	τ _e , ps	R _{ex} , s ⁻¹	$S^2{}_{ m f}{}^{ m a}$
2	5	0.00	0.43±0.06	743±173	-	0.79±0.07
3	1	3.90	$0.84{\pm}0.04$	-	-	-
4	1	4.40	0.86 ± 0.07	-	-	-
5	4	0.00	0.64 ± 0.06	64±35	6.0±2.6	-
6	1	5.00	0.87 ± 0.06	-	-	-
7	1	3.50	0.86 ± 0.07	-	-	-
8	3	3.11	0.93 ± 0.07	-	2.1±0.9	-
9	1	0.82	0.79 ± 0.06	-	-	-
10	2	0.00	0.77 ± 0.02	597±356	-	-
$^{a}S^{2} = S^{2}_{f} \cdot S^{2}$	2 _s					

Table S4. Residue-specific dynamics parameters calculated from the Lipari-Szabo model-free formalism at 14.1T for NMC under its SDS micelle bound state, at pH 4.0 and

15°C.