Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Information File

Electronic structure and ultrafast charge transfer dynamics of phosphorous doped

graphene layers on copper substrate: A combined spectroscopic study

Dunieskys Gonzalez Larrude,^{a,b} Yunier Garcia-Basabe,^{c,d*}, Fernando Lázaro Freire Junior,^{b,e} Maria Luiza M. Rocco^c.

^a Graphene and Nano-materials Research Center - MackGraphe, Mackenzie Presbyterian University, 01302-907, São Paulo, SP, Brazil.

^b Physics Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ, Brazil.

^c Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-

909, Brazil.

^d Federal University of Latin-American Integration, Foz do Iguaçu, 85866-000, PR, Brazil.

^e Brazilian Center for Physical Research, 22290-180, Rio de Janeiro, RJ, Brazil.

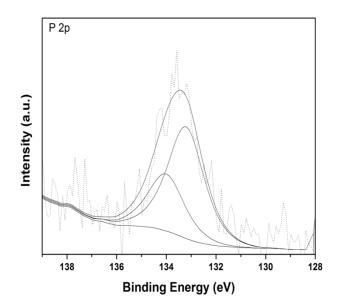
*Corresponding author. Tel.: +55-45-3576-2113; Fax: +55-21-3938-7265.

E-mail address: yunier.basabe@unila.edu.br (Y. Garcia-Basabe).

This Supporting Information is composed by one section:

- 1. Equation for quantification of the phosphorous element in GP/Cu graphene.
- 2. Supporting Figures (Figure SI1).

Figure Captions


Figure SI1. High resolution P2p XPS spectrum of GP/Cu (right) graphene layer. The two features used in the fitting procedure are also shown.

Equation for quantification of the phosphorous element amount in GP/Cu graphene.

The amount of P in the graphene film is determined from high resolution P 2p show in Figure SI1 and using the following equation.

$$\sum_{X_i=100(A_i)/(j}^m A_j)$$

The A_i represents the peak intensity in this case corresponding to P 2p XPS spectrum.

Figure SI1. High resolution P2p XPS spectrum of GP/Cu (right) graphene layer. The two features used in the fitting procedure are also shown.