†Supporting Information

Spontaneous hyper-branching in ZnO nanostructures: morphology dependent electron emission and light detection

Shreyasi Pal^a, Soumen Maiti^a, Uday Narayan Maiti^b, and Kalyan Kumar Chattopadhyay^a*

^aThin Films and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata

700032, India, ^bDepartment of Physics, Indian Institute Technology, Guwahati, India

* Email: kalyan_chattopadhyay@yahoo.com

Characterization

Product morphology was investigated with a field emission scanning electron microscope (FESEM, HITACHI S-4800). Crystallinity and phase of the synthesized artifacts were characterized by X-ray diffraction (XRD, D8 Advanced Bruker) and high resolution transmission electron microscope (HRTEM, JEM 2100). Further phase purity and surface composition of the samples were inspected by X-ray photoelectron spectroscopy (XPS) using a SPECS HSA-3500 hemispherical analyzer with monochromatic Mg K α x-ray source. Raman spectroscopic characterization was performed with WITec alpha 300RA Raman Confocal Microscope with 532 nm diode laser. The Brunauer–Emmett–Teller (BET) surface area of the heterostructures was measured with Quantachrome NovaWin2 Instrument.

Fig S1: Elemental mapping of ZnO (a-c) nanospike, (d-f) nanocactus, and (g-i) nanotree.

Nanostructures	Turn-on field	Threshold filed	Field enhancement	References
	(V μm ⁻¹)	(V μm ⁻¹)	factor (<i>β</i>)	
ZnO Nanowires	15.5 and 9.5	—	1188 and 1334	1
	$(0.1\mu \text{A/cm}^2)$			
ZnO Nanowires grown	0.7		4.11×10^{4}	2
on C cloth	(1 mA/cm^2)			
ZnO Nanowires	6.0	—	847	3
	$(0.1\mu \text{A/cm}^2)$			
ZnO radial nanowire	1.3	4.4	3010	4
array	$(0.1 \ \mu A/cm^2)$	(1mA/cm^2)		
ZnO nanosheet on ITO	3.6	—	4700	5
	$(0.1\mu A/cm^2)$			
ZnO Nanotubes	$7(0.1\mu A/cm^2)$	—	910	6
ZnO Nanoneedles	0.85		8328	7
	$(0.1\mu A/cm^2)$			
ZnO Nanorod	4.6	9.5	2923	8
Hierarchical nanosheet	3.5	7.3	4026	8
ZnO Nanobelts or nanoribbons	1.3		1.4×10^{4}	9
ZnO Nanoneedles	4.2	—	2350	10
ZnO Nanoneedles	2.5	—	—	11
ZnO Nanorods	4.1			12
	$(0.1\mu A/cm^2)$			
3D urchin-like ZnO nanostructure	3.7	4.8	1239	13
ZnO Nanowire	9.5		1334	14
ZnO Nanonails ZnO	7.9	_		15
nanopencils	7.2			
ZnO Nanoscrews	3.6	—	—	16
pin-cushion cactus like	1.38	2.84		17
ZnO nano-pencil film	$(0.1 \ \mu A/cm^2)$	$(49 \mu A/cm^2)$		
ZnO NWs/graphene	2.4	—	5661	18
ZnO nanospike	3.01	—	4473	
ZnO Nanocactus	1.44	4.10	14619	This work
ZnO Nanotree	2.03	5.09	8771	

We define the turn-on and threshold field at a field producing emission current density of 10 μ A/cm² and 1mA/cm² respectively. If other values are used, this is mentioned separately.

Nanostructures	Dark current (I _d)	Photocurrent (I _{ph})	Gain	Reference
	(A)	(A)		
ZnO hollow sphere	50×10-9	2.6×10-6	53	19
Nanofilm				
ZnO NR		2.4×10-6	10 ³	20
ZnO nanowire by	~15×10 ⁻¹²	0.28×10 ⁻⁹	19.66	21
chemical route				
ZnO nanowires	5. 98×10 ⁻¹⁰	4.67×10 ⁻⁶	7.8×10^{3}	22
Sputtered ZnO film	1. 01×10 ⁻¹⁰	1.11×10^{-4}	1.1×10^{6}	
ST ZnO NW	0.04×10 ⁻⁹	60×10 ⁻⁹	1500	23
ZnO NW array	70×10 ⁻⁶	100×10 ⁻⁶		24
ZnS /ZnO nanobelt	3.03×10 ⁻⁶	17.76×10 ⁻⁶	6.86	25
Hierarchical nanosheet	5.12×10 ⁻¹¹	1×10 ⁻⁵	1.95×10 ⁵	8
Cu- ZnO NW	10×10 ⁻¹²	100×10-9	7000	26
ZnO nanowires, ZnO-	5.2×10 ⁻¹⁰	9.7×10 ⁻⁶	1.8×10^{4}	27
PVA nano-composite	1.35×10 ⁻⁹	6.52×10 ⁻⁵	4.8×10^{4}	
ZnO NW	20×10-9	140×10-9		28
ZnO nanowire by	8.2×10 ⁻⁸	2.8×10 ⁻⁶	35.146	29
Vapor phase				
ZnO thin film by sol-gel	8.29×10 ⁻⁹	5.01×10 ⁻⁶	606	30
ZnO Nanowire coated	6.0×10 ⁻⁸	2.02×10-4	3367	31
with ZnS				
ZnO Nanowire	1.29×10 ⁻⁸	1.42×10^{-5}	1.1×10^{3}	32
ZnO Nanorod	5.34×10^{-10}	9.56×10 ⁻⁸	1.8×10^{2}	
ZnO nanospike	9.91×10 ⁻⁹	3.26×10-7	3.38×10^{1}	
ZnO Nanocactus	4.57×10-9	1.12×10-6	2.46×10^{2}	This work
ZnO Nanotree	1.63×10 ⁻¹⁰	3.61×10-6	2.21×10^{4}	

Table S2⁺ Comparison with the reported UV detectors

REFERENCES

- B. Q. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, G. Li and W. Cai, J. Phys. Chem. C, 2007, 111, 2470.
- 2) D. Banerjee, S. H. Jo and Z. F. Ren, Adv. Mater., 2004, 16, 2028.

- C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, *Appl. Phys. Lett.*, 2002, 81, 3648.
- 4) F. Xu, K. Yu, G. Li, Q. Li and Z. Zhu, *Nanotechnology*, 2006, **17**, 2855.
- 5) D. Pradhan, M. Kumar, Y. Ando and K. T. Leung, Nanotechnology, 2008, 19, 035603:1.
- A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, *Appl. Phys. Lett.*, 2006, 88, 213102:1.
- 7) C. J. Park, D. K. Choi, J. Y. Yoo, G. C. Yi and C. J. Lee, *Appl. Phys. Lett.*, 2007, **90**, 083107:1.
- 8) S. Maiti, U. N. Maiti and K. K. Chattopadhyay, CrystEngComm, 2012, 14, 8244.
- W. Z. Wang, B. Q. Zeng, J. Yang, B. Poudel, J. Y. Huang, M. J. Naughton and Z. F. Ren, *Adv. Mater.*, 2006, 18, 3275.
- 10) J. P. Liu, X. T. Huang, Y. Y. Li, X. X. Ji, Z. K. Li, X. He and F. L. Sun, J. Phys. Chem. C 2007, 111, 4990.
- 11) Y. B. Li, Y. Bando and D. Golberg, Appl. Phys. Lett., 2004, 84, 3603.
- 12) Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li and L. Guo, *Appl. Phys. Lett.*, 2006, 88, 033102:1.
- 13) H. Jiang, J. Hu, F. Gu and C. Li, Nanotechnology, 2009, 20, 055706:1.
- 14) X. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg, J. Mater. Chem., 2008, 18, 509.
- 15) S. J. Chen, Y. C. Liu, C. L. Shao, R. Mu, Y. M. Lu, J. Y. Zhang, D. Z. Shen and X. W. Fan, *Adv. Mater.*, 2005, 17, 586.
- 16) L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, W. Z. Song and Q. Fu, Appl. Phys. Lett., 2005, 86, 083106:1.
- 17) S. S. Warule, N. S. Chaudhari, J. D. Ambekar, B. B. Kale and M. A. More, ACS Appl. Mater. Interfaces, 2011, 3, 3454..
- 18) J. O. Hwang, D. H. Lee, J. Y. Kim, T. H. Han, B. H. Kim, M. Park, K. No and S. O. Kim, J. *Mater. Chem.*, 2011, 21, 3432.
- 19) M. Chen, L. Hu, J. Xu, M. Liao, L. Wu and X. Fang, Small, 2011, 7, 2449.
- J. Y. Park, Y.S. Young, Y.S. Hong, H. Oh, J. J. Kim and S. S. Kim, *Appl. Phys. Lett.*, 2005, 87, 123108:1.
- 21) S-E. Ahn, H. J. Ji, K. Kim, G. T. Kim, C. H. Bae, S. M. Park, Y-K. Kim and J. S. Ha, *Appl. Phys. Lett.*, 2007, **90**, 153106.

- 22) T. Ghosh and D. Basak, *Nanotechnology*, 2010, **21**, 375202.
- 23) J. Zhou, Y. D. Gu, Y.F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla and Z. L. Wang, *Appl. Phys. Lett.*, 2009, 94, 191103:1.
- 24) J. B. K. Law and J. T. L. Thong, Appl. Phys. Lett., 2006, 88, 133114:1.
- 25) L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang and X. Fang, Adv. Mater., 2012, 24, 2305.
- 26) N. Kouklin, Adv. Mater., 2008, 20, 2190.
- 27) A. Bera and D. Basak, ACS Appl. Mater. Interfaces, 2009, 1, 2066.
- 28) Z. Y. Fan, D. Dutta, C. J. Chien, H. Y. Chen, E. C. Brown, P. C. Chang and J. G. Lu, *Appl. Phys. Lett.*, 2006, **89**, 213110:1.
- 29) S. Hullavarad, N. Hullavarad, D. Look and B. Claflin, Nanoscale Res Lett., 2009, 4, 1421.
- 30) M. Dutta, S. Mridha and D. Basak, Appl. Surf. Sci., 2008, 254, 2743.
- 31) A. Bera and D. Basak, ACS Appl. Mater. Interfaces, 2010, 2, 408.
- S. Maiti, U. N. Maiti, A. Chowdhury and K. K. Chattopadhyay, *CrystEngComm*, 2014, 16, 1659.