Supporting Information

Fabrication of NiCo₂O₄ and Carbon Nanotube Nanocomposite Films as High-

performance Flexible Electrode of Supercapacitor

Shanshan Xu,^a Deming Yang,^a Fan Zhang,^{bc} Jiacheng Liu, ^a Anran Guo^a and Feng Hou^{*a}

^aKey Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education,

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

^bWanger Institute for Sustainable Energy Research

^cDepartment of Mechanical, Materials and Aerospace Engineering, Illinois Institute of

Technology, Illinois, USA

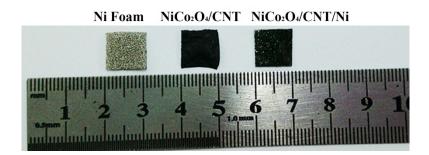


Fig. S1 Fabrication of the working electrode.

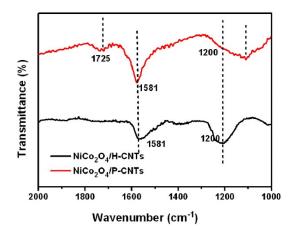


Fig. S2 FT-IR spectra of pristine CNTs and H-CNTs: The sample of pristine CNTs has two peaks: 1581 cm⁻¹ and 1200 cm⁻¹, assigned to the carbon skeleton.^{1, 2} Comparing with pristine CNTs, the extra peaks in H-CNTs at 1725 cm⁻¹ and 1100 cm⁻¹ are corresponding to C=O and C-O stretching vibration of carboxyl group which manifests the formation of

hydrophilic groups on the surface of CNTs.

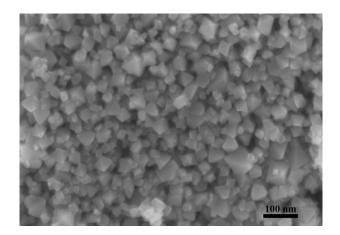


Fig. S3 The morphology of pure $NiCo_2O_4$.

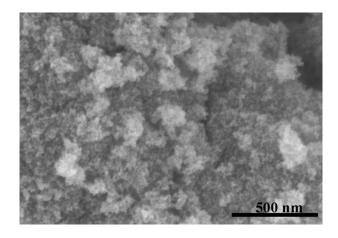


Fig. S4 SEM images of excessive NiCo₂O₄ deposition on CNT films.

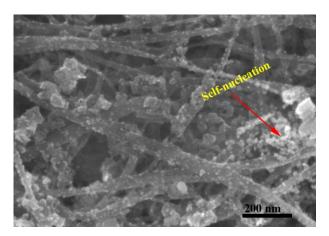
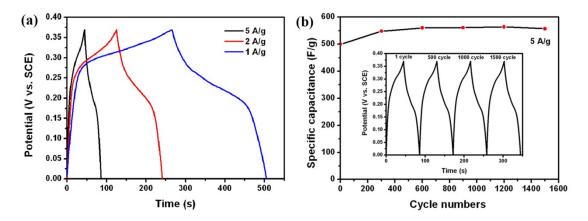
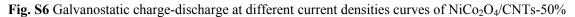




Fig. S5 SEM images of NiCo₂O₄ deposition on CNT films without drying process before adding

ammonia.

(a); cycling stability of NiCo₂O₄/ CNTs-50% electrodes at a current density of 5 A/g (b).

Reference:

- 1. M. S. P. Shaffer, X. Fan and A. H. Windle, Carbon, 1998, 36, 1603-1612.
- 2. T. G. Ros, A. J. van Dillen, J. W. Geus and D. C. Koningsberger, *Chem.-Eur. J.*, 2002, **8**, 1151-1162.