Supporting Information

Synthesis of a Visibly Emissive 9-nitro-2,3-dihydro-1Hpyrimido[1,2-a]quinoxalin-5-amine Scaffold with Large Stokes Shift and Live Cell Imaging

Ajay Kanungo,^{a, ‡} Dipendu Patra,^{a, ‡} Sanghamitra Mukherjee, ^a Tridib Mahata,^a Prakas R. Maulik^a and Sanjay Dutta^{*a}

^aOrganic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur. Kolkata 700 032 (India), Fax: (+91) 33-2473-5197, E-mail. sanjaydutta@iicb.res.in

Author Contributions

[‡]These authors contributed equally.

Table of Contents

S1	Synthesis									S1
S2 5e)	¹ H-NMR	and	¹³ C-NMR	spectra	of	(2a-2h),	(3a-3h),	(4a-4h)	and	(5a,5c- S1-S57
S3	¹ H- ¹ H NOES	SY - s	pectra							S58
S4	Full absorpt	ion sp	bectra of (4a	- 4h)						S59
S 5	X-ray crysta	allogra	aphy		•••••					S60
S6	References									S64

S1 Synthesis :

Scheme S1 Synthesis of 2,3-dichloro-6-nitroquinoxaline¹

S 2 ¹H-NMR and ¹³C-NMR spectra of (2a-2h), (3a-3h), (4a-4h) and (5a,5c-5e) :

¹H-NMR (CDCl₃, 300 MHz) of 2a

¹³C-NMR (DMSO-d₆, 75 MHz) of **2a**

5.0 4.5 f1 (ppm) ۲

2.42

3.5

3.0

4.0

10.83 - 3.76 -

2.5

٣

2.21

2.0

1.5

1.0

0.5

0.0 -0.

7 -

0.75

8.5

10.0

9.5

9.0

۲

55

7.5

7.0

6.0

5.5

6.5

8.0

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 2b

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 2c

¹³C-NMR (DMSO-d₆, 75 MHz) of **2d**

¹H-NMR (CDCl₃, 300 MHz) of 2f

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of **2f**

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 2g

S15

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 2h

100 90 f1 (ppm)

¹³C-NMR (CDCl₃, 75 MHz) of **3a**

¹³C-NMR (CDCl₃, 75 MHz) of **3b**

¹H-NMR (CDCl₃, 300 MHz) of 3c

¹³C-NMR (CDCl₃, 75 MHz) of 3c

¹³C-NMR (CDCl₃, 75 MHz) of **3d**

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 3e

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of **3f**

¹³C-NMR (CDCl₃ + 1 drop CD₃OD, 75 MHz) of 3g

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 3h

.00 90 80 f1 (ppm) -20 -10

¹³C-NMR (CDCl₃, 75 MHz) of 4a

S35

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 4b

					l						-	70	00	EO	40	30	20	nnm
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	PPIII

S38

$^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of 4c

					1	1	1										
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

¹³C-NMR (CDCl₃, 75 MHz) of 4d

¹H-NMR (CDCl₃, 600 MHz) of 4e

-0.015

¹³C-NMR (CDCl₃, 75 MHz) of **4e**

).0

¹H-NMR (CDCl₃, 300 MHz) of 4f

¹³C-NMR (CDCl₃, 75 MHz) of **4f**

¹H-NMR (CDCl₃, 300 MHz) of 4g

¹³C-NMR (CDCl₃, 75 MHz) of 4g

¹H-NMR (CDCl₃, 300 MHz) of 4h

2.086 2.1124 2.1124 2.1124 2.1124 2.1124 2.1124 2.1124 2.1124 2.1124 2.1124 000.0—

$^{13}\text{C-NMR}$ (CDCl₃, 150 MHz) of 4h

¹H-NMR (CDCl₃, 300 MHz) of 5a

¹³C-NMR (CDCl₃, 75 MHz) of 5a

100000000000000000000000000000000000000		enderson e	1000					440	400	~~	00	70	60	50	40	30	20	10	nnm
190	180	170	160	150	140	130	120	110	100	90	80	70	00	50	40	50	20	10	pp

million

T

¹H-NMR (CDCl₃, 300 MHz) of **5c**

¹³C-NMR (CDCl₃, 75 MHz) of **5**c

¹H-NMR (CDCl₃, 300 MHz) of 5d

¹³C-NMR (CDCl₃, 75 MHz) of **5d**

¹H-NMR (CDCl₃, 300 MHz) of **5e**

¹³C-NMR (CDCl₃, 75 MHz) of **5**e

 $^{13}\text{C-NMR}$ (CDCl₃, 75 MHz) of **5e** (region expanded δ 128.0 - 136.0)

S 3 ¹H-¹H NOESY Spectra :

Fig. S1. ¹H-¹H NOESY spectra of compound **5**e.

S4. Full absorption spectra of (4a-4h) :

Fig. S2 Full absorption spectra of $(4a-4h)(50 \mu M)$ in Ethanol

COMPOUNDS	$\lambda_{max1}(nm)$	$\lambda_{max2}(nm)$
4 a	400	292
4b	403	293
4c	400	283
4d	402	270
4 e	402	292
4f	400	282
4g	403	292
4h	417	272

 Table 1 Full absorption spectra of (4a-4h)

S5 X-ray crystallography:

Single crystals were grown by slow evaporation of the compounds from methanol and chloroform. Data were collected at 293K on Bruker Kappa APEX2 CCD diffractometer equipped graphite monochromated and MonoCap-collimated with MoK α radiation.² Preliminary lattice parameters and orientation matrices were obtained from three sets of frames. Then full data were collected using the ω and ϕ scan method with the frame width of 0.5°. Data were processed with the SAINT+ program for reduction and cell refinement.³ Multiscan absorption corrections were applied by using the SADABS program for area detector.⁴ The structures were solved with SHELXT⁴ and refined with SHELXL⁶ using Olex2 as GUI.⁷

Table 2 Crystal data and structure r	efinement for 4c .
Identification code	4c (CCDC no: 1058070)
Empirical formula	$C_{16}H_{15}N_5O_3$
Formula weight	325.33
Temperature/K	296.15
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁
a/Å	8.4267(9)
b/Å	10.4362(12)
c/Å	17.949(2)
α/°	90
β/°	100.189(7)
γ/°	90
Volume/Å ³	1553.6(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.391
μ/mm^{-1}	0.100
F(000)	680.0
Crystal size/mm ³	$0.72 \times 0.34 \times 0.1$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.612 to 54.928
Index ranges	$-10 \leq h \leq 10,-13 \leq k \leq 13,-23 \leq l \leq 23$
Reflections collected	15689
Independent reflections	6998 [$R_{int} = 0.0438$, $R_{sigma} = 0.0612$]
Data/restraints/parameters	6998/239/498
Goodness-of-fit on F ²	0.958
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0451$, $wR_2 = 0.0985$
Final R indexes [all data]	$R_1 = 0.1039, wR_2 = 0.1245$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.16

Fig. S3. ORTEP diagram of **4c**, in which thermal elliosoids shown in 30% probability level. The asymmetric unit contains two crystallographically independent molecules. The five membered ring in one molecule and a six membered ring in another molecule are disordered over two positions.

Table 3 Crystal data and structure refinement for 5e.						
Identification code	5e (CCDC no: 1058069)					
Empirical formula	$C_{25}H_{26}N_6O_5$					
Formula weight	490.52					
Temperature/K	296.15					
Crystal system	triclinic					
Space group	<u>P-1</u>					
a/Å	5.8603(5)					
b/Å	11.0162(13)					
c/Å	19.371(2)					
α/°	76.719(7)					
β/°	87.487(6)					
γ/°	80.980(6)					
Volume/Å ³	1202.0(2)					
Ζ	2					
$\rho_{calc}g/cm^3$	1.355					
μ/mm^{-1}	0.097					
F(000)	516.0					
Crystal size/mm ³	0.22 imes 0.22 imes 0.2					
Radiation	MoKa ($\lambda = 0.71073$)					
2Θ range for data collection/°	2.16 to 55.122					
Index ranges	$\begin{array}{l} \textbf{-7} \leq h \leq \textbf{7}, \textbf{-14} \leq k \leq \textbf{14}, \textbf{-24} \leq \textbf{1} \\ \leq 25 \end{array}$					
Reflections collected	23939					
Independent reflections	5490 [$R_{int} = 0.0638$, $R_{sigma} = 0.0924$]					
Data/restraints/parameters	5490/0/328					
Goodness-of-fit on F ²	0.943					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0558$, $wR_2 = 0.1352$					
Final R indexes [all data]	$R_1 = 0.1671$, $wR_2 = 0.1831$					
Largest diff. peak/hole / e Å ⁻³	0.18/-0.21					

Fig. S4. ORTEP diagram of the asymmetric unit of **5e**, in which thermal elliosoids shown in 30% probability level.

S6 References :

- J. Deng, E. Feng, S. Ma, Y. Zhang, X. Liu, H. Li, H. Huang, J. Zhu, W. Zhu, X. Shen, L. Miao, H. Liu, H. Jiang and J. Li. *J Med. Chem.* 2011, **54**, 4508.
- APEXII, Program for Bruker CCD X-ray Diffractometer Control; Bruker AXS, Inc.: Madison, WI, 2006.
- SAINT+, Program for reduction of data collected on a Bruker CCD area detector diffractometer; Bruker AXS, Inc.: Madison, WI, 2006
- 4. G. M. Sheldrick, SADABS, Program for empirical absorption correction of areadetector data; Universität Göttingen: Göttingen, Germany, 2008.
- 5. G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- 6. G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann. J. Appl. Cryst., 2009, 42, 339-341.