> Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Supporting Information

Theoretical and experimental investigation of the polyeletrophilic β -enamino diketone: Straightforward and highly regioselective synthesis of 1,4,5-trisubstituted pyrazoles and pyrazolo[3,4-*d*]pyridazinones

Michael J. V. da Silva,^{*a*} Raí G. M. Silva,^{*a*} Ulisses Z. Melo,^{*a*} Davana S. Gonçalves,^{*a*} Davi F. Back,^{*b*} Sidnei Moura Silva,^{*c*} Rodrigo M. Pontes,^{*a*} Ernani A. Basso,^{*a*} Gisele F. Gauze,^{*a*} Fernanda A. Rosa^{*a**}

^aEstereoquímica de Compostos Orgânicos e Docking Molecular, Departamanto de Química, Universidade Estadual de Maringá (UEM), 87030-900, Maringá, PR, Brazil, http://www.dqi.uem.br/professores/eabasso/geco/, E-mail: farosa@uem.br

^bDepartamento de Química, Universidade Federal de Santa Maria (UFSM), 97110-970 - Santa Maria, RS, Brazil.

^cLaboratório de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), 295070-560, Caxias do Sul, RS, Brazil.

Table of contents

(Fig. 1) Conformations of the building block β -enamino diketone (2)	S3
(Table 1) Dipole moment (Debye) and relative energies (kJ mol ⁻¹) for the conformations of building block 2	S4
Cartesian coordinates for the conformer ASSA, gas phase	S5
Cartesian coordinates for the conformer ASSS, gas phase	S5
Cartesian coordinates for the conformer SSSA, gas phase	\$5-\$6
Cartesian coordinates for the conformer SSSS, gas phase	S6
Cartesian coordinates for the conformer ASSA, dichloromethane	S6
Cartesian coordinates for the conformer ASSS, dichloromethane	S6-S7
Cartesian coordinates for the conformer SSSS, dichloromethane	S7
Cartesian coordinates for the conformer ASSA, ethanol	S7-S8
Cartesian coordinates for the conformer ASSS, ethanol	S8
Cartesian coordinates for the conformer SSSS, ethanol	
ESI(+)-MS spectrum of 2	S10
ESI(+)-MS for the reaction of 2 with phenylhydrazine in ethanol at r.t. after 6 hours of reaction	S11
ESI(+)-MS/MS spectrum of the ion of m/z 380.1855	S12
ESI(+)-MS/MS spectrum of the ion of m/z 362.1708	S13
ESI(+)-MS/MS spectrum of the ion of m/z 335.1285	S14
RMN ¹³ C spectrum for the reaction of enamino diketone (2) with phenylhydrazine in CDCl ₃ at r.t. after 6 hours time	S15
ESI(+)-MS spectrum of 3	S16
ESI(+)-MS spectrum of 4a	S17
ESI(+)-MS spectrum of 4b	S18

ESI(+)-MS spectrum of 4c	
ESI(+)-MS spectrum of 5b(<i>E</i>)	
ESI(+)-MS spectrum of 5b(Z)	
ESI(+)-MS spectrum of 6b	
ESI(+)-MS spectrum of 6c	
ESI(+)-MS spectrum of 6d	
ESI(+)-MS spectrum of 6e	
ESI(+)-MS spectrum of 6f	S26
ESI(+)-MS spectrum of 6g	
ESI(+)-MS spectrum of 7	
ESI(+)-MS spectrum of 8	
¹ H and ¹³ C NMR spectra of 2	
¹ H and ¹³ C NMR spectra of 3	
¹ H and ¹³ C NMR spectra of 4a	\$34-\$35
¹ H, ¹³ C and NOESY 1D NMR spectra of 4b	\$36-S37
¹ H and ¹³ C NMR spectra of 4c	
¹ H, ¹³ C and 2D NMR spectra of 5b(E)	S40-S44
¹ H, ¹³ C and 2D NMR spectra of 5b(<i>Z</i>)	
¹ H and ¹³ C NMR spectra of 6b	\$50-\$51
¹ H and ¹³ C NMR spectra of 6c	
¹ H and ¹³ C NMR spectra of 6d	\$54-\$55
¹ H and ¹³ C NMR spectra of 6e	\$\$56-\$57
¹ H and ¹³ C NMR spectra of 6f	

¹ H and ¹³ C NMR spectra of 6 g	
¹ H and ¹³ C NMR spectra of 7	
¹ H, ¹³ C and 2D NMR spectra of 8	

Fig. 1 Conformations of the building block β -enamino diketone (2).

	μ	E _{rel} gas phase	<i>E</i> _{rel} dichloromethane	E _{rel} ethanol
AAAA	7.11	35.26	23.44	21.69
AAAS	9.30	42.97	26.26	23.05
AASA	5.04	9.60	8.42	9.03
AASS	7.31	13.19	8.68	8.65
ASAA	6.92	16.43	9.96	9.95
ASAS	7.26	22.05	11.00	10.00
SAAA	-	\rightarrow AAAS	\rightarrow saas	\rightarrow saas
SAAS	-	\rightarrow AAAS	30.38	25.99
SASA	-	\rightarrow AASS	\rightarrow SASS	\rightarrow SASS
SASS	-	\rightarrow AASS	13.73	11.82
SSAA	8.70	17.99	\rightarrow SSAS	\rightarrow ssas
SSAS	9.47	24.10	11.11	9.75

Table 1 Dipole moment (Debye) and relative energies (kJ mol⁻¹) for the conformations of building block **2** optimized at M06-2X/6-31+G(d,p) level and IEF-PCM model for solvation effects.

Conformer ASSA, gas phase

opt freq=noraman m062x/6-31+g(d,p)geom=connectivity

01

С	-1.13452100	-1.29637200	-0.50921800
С	0.29841100	-1.63212500	-0.06538500
С	1.28502500	-0.54736900	-0.06997400
С	0.92352500	0.86340500	-0.21826700
С	-0.40293100	1.31288400	0.42367500
0	-2.03074400	-2.06007200	0.08950100
0	-1.38070600	-0.45763900	-1.34873100
0	1.62506400	1.70047200	-0.75823700
0	-0.86424700	2.42645800	-0.11743400
0	0.57110800	-2.79895000	0.15820000
0	-0.91970600	0.71803100	1.34429800
Н	3.75387000	1.76202600	0.02851300
С	2.59793900	-0.99974200	-0.13302900
Н	4.73556300	0.99393700	1.32003600
С	3.80082500	0.94852500	0.75669300
Н	2.72396100	-2.05570000	-0.37069400
Ν	3.73199500	-0.35440100	0.11179500
Н	2.96040500	1.05158200	1.44630500
С	5.01165100	-0.96988700	-0.21398800
н	5.53814800	-0.36458900	-0.95853500
Н	5.63086800	-1.04353200	0.68496100
Н	4.84829200	-1.96641400	-0.62420700
С	-3.40135900	-1.80716800	-0.26521500
Н	-3.62435100	-0.75998300	-0.03662500
Н	-3.51467200	-1.95153500	-1.34371700
С	-2.11979800	2.89559800	0.40285300
Н	-2.86433400	2.10622300	0.25770200
Н	-2.01065700	3.06575700	1.47811600
С	-4.25469100	-2.76296300	0.53772500
Н	-5.31055100	-2.59915900	0.30662900
Н	-4.00103700	-3.79845700	0.29926600
Н	-4.10215700	-2.60503600	1.60783800
С	-2.47167200	4.15988600	-0.34830700
н	-2.56277800	3.95735800	-1.41781200
н	-3.42410100	4.55338400	0.01656900
н	-1.70100700	4.92051700	-0.20306200

Energy (SCF) = -973.24117121 a.u. Imaginary Freq. = 0

Conformer ASSS, gas phase

opt freq=noraman m062x/6-31+g(d,p) geom=connectivity

01

С	-1.21776800	-0.88703500	-0.69645900
С	0.08708900	-1.30021900	0.00901800
С	1.25086900	-0.45024600	-0.13699200
С	1.20564900	0.89744900	-0.67785100
С	-0.03109500	1.78906900	-0.42435600
0	-2.28266500	-1.35692200	-0.07648000
0	-1.23592000	-0.24400600	-1.72650300
0	2.11495400	1.41901200	-1.31115900

0	-0.72823200	1.39444000	0.63663600
0	0.09783000	-2.38881100	0.57818300
0	-0.28804100	2.75526900	-1.10107900
Н	4.12832100	1.36569900	-0.10907800
С	2.47180100	-1.12971500	0.07790500
Н	4.69108300	0.77116600	1.48134200
С	3.87196800	0.75816000	0.76149900
Н	2.44081500	-2.21657500	0.02548100
Ν	3.64572800	-0.63048500	0.37708400
Н	2.96906500	1.15717900	1.22588800
С	4.83210800	-1.48830900	0.39874300
Н	5.56124600	-1.10291000	-0.31764900
Н	5.26828900	-1.47454200	1.39996600
Н	4.55479900	-2.50458900	0.12363700
С	-3.56573900	-1.05724800	-0.67840100
Н	-3.67547100	0.03074900	-0.71791300
Н	-3.56224000	-1.44636600	-1.69944000
С	-1.95426400	2.11812200	0.90475400
Н	-1.69415900	3.15370800	1.13753000
н	-2.55552000	2.10622200	-0.00934000
С	-4.62616400	-1.70767800	0.17882700
Н	-5.60993800	-1.50679600	-0.25248300
Н	-4.47858400	-2.78945900	0.22082400
н	-4.60383500	-1.30744800	1.19566600
С	-2.64330600	1.42228600	2.05534300
н	-2.02135000	1.44737900	2.95349300
н	-3.58662500	1.93034900	2.27089400
Н	-2.85629100	0.37994900	1.80262500

Energy (SCF) = -973.27287118 a.u. Imaginary Freq. = 0

Conformer SSSA, gas phase

opt freq=noraman m062x/6-31+g(d,p) geom=connectivity

01

С	-0.57519600	2.08349000	-0.28352700
С	0.91575900	1.72860500	-0.44999200
С	1.38809000	0.37756700	-0.11057500
С	0.48882600	-0.74983700	0.13736900
С	-0.79118700	-0.80828400	-0.71783300
0	-1.12178100	1.38494800	0.72810200
0	-1.15241500	2.90672800	-0.93574800
0	0.71155600	-1.65785300	0.91917500
0	-1.73682400	-1.55862200	-0.16625900
0	1.65634100	2.63477900	-0.78322700
0	-0.88585400	-0.25553700	-1.78956300
Н	2.74677400	-2.63303500	0.60065600
С	2.75283300	0.32712900	0.14781200
Н	4.11675100	-2.55626500	-0.55584500
С	3.20800800	-2.06032900	-0.20785100
Н	3.24753200	1.29157500	0.25739300
Ν	3.56870300	-0.71788400	0.22227700
Н	2.49723400	-1.99287400	-1.03434800
С	4.93290100	-0.54958500	0.70582100
Н	5.07889000	-1.12744500	1.62389200
Н	5.64314500	-0.89900800	-0.04934600
н	5.12128100	0.50260300	0.91923800

С	-2.53364200	1.56865800	0.93101800
н	-2.73074800	2.63478900	1.07333100
Н	-3.04817200	1.25222800	0.01597600
С	-2.92931400	-1.73362300	-0.95383200
Н	-3.30956600	-0.74872000	-1.24188600
Н	-2.65943200	-2.26674300	-1.87060000
С	-2.92279200	0.73532900	2.13239500
Н	-4.00226500	0.79986500	2.29501000
Н	-2.64819300	-0.31110800	1.97445500
Н	-2.41480200	1.09524300	3.03039800
С	-3.91559100	-2.50906700	-0.10973000
Н	-4.18224500	-1.94713000	0.78901700
Н	-4.82665700	-2.69610300	-0.68398800
Н	-3.49081100	-3.46853800	0.19442600

Energy (SCF) = -973.239434 Imaginary Freq. = 0

Conformer SSSS, gas phase

opt freq=noraman m062x/6-31+g(d,p)geom=connectivity

01

с	-1.25249700	0.04162700	1.45932700
С	0.22788700	0.47308300	1.49745200
С	1.12600500	0.05299500	0.41143900
С	0.64079700	-0.53204100	-0.84308400
С	-0.70735900	-0.03778000	-1.41565200
0	-1.36928000	-1.17629000	0.91667000
0	-2.16600600	0.69989400	1.88035500
0	1.23596100	-1.37724900	-1.48534900
0	-0.99219100	1.18792200	-0.96205300
0	0.59439400	1.08897700	2.48148300
0	-1.39256200	-0.66995300	-2.17490300
Н	3.38577200	-0.80331400	-1.93812400
С	2.46890800	0.08346600	0.76709900
Н	4.48635900	0.60190100	-1.75234900
С	3.53609300	0.16022000	-1.44461400
Н	2.67249600	0.22618000	1.82798800
N	3.55455700	0.02591000	0.00434500
Н	2.72073500	0.82722400	-1.73286300
С	4.87054800	-0.12633700	0.61168500
Н	5.33278700	-1.05776800	0.27051600
Н	5.51271800	0.71307700	0.32888100
Н	4.77426200	-0.15887600	1.69688400
С	-2.26419400	1.74582100	-1.34965200
Н	-2.27369400	1.85277000	-2.43836500
Н	-3.04889500	1.03615800	-1.06973400
С	-2.40836400	3.06445600	-0.62433300
Н	-1.60781300	3.75119900	-0.91024700
Н	-3.36724900	3.52250600	-0.88077700
Н	-2.37198900	2.90466300	0.45604500
С	-2.70515400	-1.69731500	0.76129100
Н	-3.15770500	-1.78185000	1.75343900
Н	-3.28709000	-0.97599600	0.17904700
С	-2.57904600	-3.02691100	0.05266800
Н	-1.97778800	-3.72160900	0.64428900
Н	-3.57134400	-3.46188700	-0.09270000
Н	-2.10773800	-2.88986200	-0.92371700

Energy (SCF) = -973.24139261 a.u. Imaginary Freq. = 0

Conformer ASSA, dichloromethane#optfreq=noramanm062x/6-

31+g(d,p)scrf=(iefpcm,solvent=dichloromethane,read)

geom=connectivity

01

С	-1.11925400	-1.29753200	-0.53149500
С	0.32404500	-1.61502300	-0.10154700
С	1.29106400	-0.53769500	-0.10515100
С	0.91530000	0.85847600	-0.23663700
С	-0.41617700	1.29350500	0.41161700
0	-2.00048900	-2.04168000	0.10398900
0	-1.38139100	-0.48352500	-1.39485400
0	1.60147300	1.72072400	-0.77130600
0	-0.90012000	2.38980200	-0.13408600
0	0.59746100	-2.79222900	0.11994300
0	-0.91660200	0.69518700	1.34313900
н	3.76916200	1.78199400	0.14998100
С	2.63107700	-0.97377500	-0.19343000
н	4.65005000	0.94883600	1.46397800
С	3.75252200	0.93961300	0.84475600
н	2.78798900	-1.99522600	-0.53572600
Ν	3.72706000	-0.32836700	0.12323300
н	2.86900000	1.01372600	1.48035200
С	5.03948500	-0.90100800	-0.18289300
н	5.59051100	-0.20599200	-0.82086300
Н	5.59173000	-1.05180500	0.74739700
н	4.91480500	-1.84973400	-0.70227500
С	-3.39103600	-1.82515100	-0.24025500
Н	-3.62658800	-0.77707500	-0.03431200
н	-3.50944600	-2.00984700	-1.31068200
С	-2.15171400	2.87562700	0.40951800
Н	-2.89933800	2.08736700	0.28347600
Н	-2.01012800	3.05970300	1.47735600
С	-4.21425700	-2.77279400	0.60013100
Н	-5.27331700	-2.62565400	0.37447200
Н	-3.95287400	-3.81098500	0.38155600
Н	-4.05528900	-2.58278100	1.66430100
С	-2.51252000	4.13315800	-0.34580900
н	-2.63164000	3.92411700	-1.41158700
н	-3.45689900	4.52506900	0.04002700
н	-1.74103600	4.89621600	-0.21751000

radii=bondi

Energy (SCF) = -973.2394674 Imaginary Freq. = 0

Conformer ASSS, dichloromethane

#	opt	freq=noraman	m062x/6-

31+g(d,p)scrf=(iefpcm,solvent=dichloromethane,read)

geom=connectivity

01

с	-1.21776800	-0.88703500	-0.69645900
С	0.08708900	-1.30021900	0.00901800
С	1.25086900	-0.45024600	-0.13699200
С	1.20564900	0.89744900	-0.67785100
С	-0.03109500	1.78906900	-0.42435600
0	-2.28266500	-1.35692200	-0.07648000
0	-1.23592000	-0.24400600	-1.72650300
0	2.11495400	1.41901200	-1.31115900
0	-0.72823200	1.39444000	0.63663600
0	0.09783000	-2.38881100	0.57818300
0	-0.28804100	2.75526900	-1.10107900
Н	4.12832100	1.36569900	-0.10907800
С	2.47180100	-1.12971500	0.07790500
Н	4.69108300	0.77116600	1.48134200
С	3.87196800	0.75816000	0.76149900
Н	2.44081500	-2.21657500	0.02548100
Ν	3.64572800	-0.63048500	0.37708400
Н	2.96906500	1.15717900	1.22588800
С	4.83210800	-1.48830900	0.39874300
Н	5.56124600	-1.10291000	-0.31764900
Н	5.26828900	-1.47454200	1.39996600
Н	4.55479900	-2.50458900	0.12363700
С	-3.56573900	-1.05724800	-0.67840100
Н	-3.67547100	0.03074900	-0.71791300
Н	-3.56224000	-1.44636600	-1.69944000
С	-1.95426400	2.11812200	0.90475400
Н	-1.69415900	3.15370800	1.13753000
Н	-2.55552000	2.10622200	-0.00934000
С	-4.62616400	-1.70767800	0.17882700
Н	-5.60993800	-1.50679600	-0.25248300
Н	-4.47858400	-2.78945900	0.22082400
Н	-4.60383500	-1.30744800	1.19566600
С	-2.64330600	1.42228600	2.05534300
Н	-2.02135000	1.44737900	2.95349300
Н	-3.58662500	1.93034900	2.27089400
Н	-2.85629100	0.37994900	1.80262500

radii=bondi

Energy (SCF) = -973.27287118 a.u. Imaginary Freq. = 0

Conformer SSSS, dichloromethane

#	opt	freq=nora	man	m062x/6
31+g(d,p)	scrf=(iefpcm,so	olvent=dichlor	omethane,read)geom=co
nnectivity				
01				
С	-1.23209500	-0.71889100	1.29487100	
С	0.26327700	-0.41029300	1.50550000	
С	1.13766200	-0.21277200	0.36578900	
С	0.65849500	-0.03780000	-0.99506300	

С	-0.68053400	0.69417700	-1.24601000
0	-1.43358500	-1.42627200	0.18813800
0	-2.09104000	-0.39284500	2.07877100
0	1.26054300	-0.40405300	-1.99644000
0	-1.01637100	1.47490900	-0.22620300
0	0.64589500	-0.42154800	2.67210600
0	-1.30443000	0.58662500	-2.27465800
Н	3.43758400	0.47418100	-2.03886300
С	2.50306800	-0.42676300	0.66211400
Н	4.44613000	1.54883600	-1.02571700
С	3.52293500	0.96995700	-1.06953200
Н	2.72223400	-0.98441100	1.57066700
Ν	3.56088500	-0.00717600	0.01271200
Н	2.66783900	1.63254300	-0.92772600
С	4.89693700	-0.46267900	0.40181400
Н	5.37128800	-0.94407000	-0.45652500
Н	5.49493400	0.39809000	0.70862500
Н	4.81749500	-1.17584100	1.22059500
С	-2.25650400	2.21694400	-0.34110100
Н	-2.19894000	2.83394700	-1.24105000
Н	-3.07106600	1.49735000	-0.45839700
С	-2.39972900	3.03952700	0.91777600
Н	-1.57060800	3.74463600	1.01540100
Н	-3.33375300	3.60500000	0.87401900
Н	-2.42344600	2.39286900	1.79827900
С	-2.80364800	-1.77072100	-0.13730800
Н	-3.24093700	-2.27797100	0.72567400
Н	-3.34644500	-0.83771300	-0.31414000
С	-2.76148200	-2.64663100	-1.36740800
Н	-2.20809200	-3.56726600	-1.16686200
Н	-3.78184300	-2.90963300	-1.65678700
Н	-2.28696400	-2.11915500	-2.19854500

radii=bondi

Energy (SCF) = -973.27243715 a.u. Imaginary Freq. = 0

Conformer ASSA, ethanol

#	opt	freq=noraman	m062x/6-	
31+g(d,p)scrf=(iefpcm,solvent=ethanol,read)				
geom=conn	ectivity			

01

С	-1.11338900	-1.29964300	-0.53550200
С	0.32941000	-1.61405900	-0.10064100
С	1.29362800	-0.53765400	-0.10980800
С	0.91184200	0.85506000	-0.24532500
С	-0.41766900	1.28730700	0.40978700
0	-1.99589600	-2.03880800	0.10302000
0	-1.37364300	-0.49006700	-1.40415000
0	1.58959000	1.71939000	-0.78916700
0	-0.90792900	2.38066600	-0.13502000
0	0.60118700	-2.79121000	0.13034800
0	-0.91210000	0.68786700	1.34415600
Н	3.76670600	1.78908600	0.14582200
С	2.63798700	-0.97001300	-0.19641800

н	4.63732000	0.96249400	1.46952300
С	3.74432000	0.94988600	0.84425300
Н	2.80075600	-1.98892800	-0.54321200
N	3.72751300	-0.32029600	0.12538800
Н	2.85584900	1.02432100	1.47266600
С	5.04517400	-0.88810800	-0.17082300
Н	5.59831700	-0.18774700	-0.80066500
Н	5.58793300	-1.03835800	0.76481300
Н	4.92795400	-1.83539900	-0.69418700
С	-3.38804600	-1.82444600	-0.24344200
Н	-3.62247400	-0.77472900	-0.04541300
Н	-3.50567600	-2.01909700	-1.31200400
С	-2.15732100	2.86764800	0.41706000
Н	-2.90499800	2.07868100	0.29707100
Н	-2.00666100	3.05428800	1.48297900
С	-4.21123700	-2.76484100	0.60465500
Н	-5.26987100	-2.61767000	0.37745200
Н	-3.95176800	-3.80510000	0.39351900
Н	-4.05288700	-2.56626500	1.66742700
С	-2.52363700	4.12355200	-0.33781500
Н	-2.65115600	3.91327200	-1.40246000
Н	-3.46559500	4.51454100	0.05459000
Н	-1.75238500	4.88783800	-0.21501900

radii=bondi

Energy (SCF) = -973.27665182 a.u. Imaginary Freq. = 0

Conformer	ASSS,	ethanol	

#	opt	freq=nora	man	m062x/6-	
31+g(d,p)s	31+g(d,p)scrf=(iefpcm,solvent=ethanol,read)				
geom=con	nectivity				
01					
c	1 21956000	0 00707100	0 60706700		
c c	-1.21850000	1 20096000	-0.09790700		
	0.06615400	-1.50060900	0.00501600		
	1.25047100	-0.45337900	-0.14276600		
	1.20417400	0.89189100	-0.68369700		
C	-0.03150600	1.78468500	-0.42885100		
0	-2.28088500	-1.3580/000	-0.07624000		
0	-1.238/2200	-0.24422700	-1./2841400		
0	2.11201100	1.41467500	-1.32061200		
0	-0.72599000	1.39650100	0.63306200		
0	0.09822800	-2.39045000	0.57516600		
0	-0.28826500	2.74825900	-1.11192100		
Н	4.12882500	1.36724500	-0.09335100		
С	2.47544300	-1.13278000	0.07137300		
Н	4.66911600	0.77132800	1.50324500		
С	3.85974100	0.75897800	0.77282700		
Н	2.45076700	-2.21897400	0.00572400		
Ν	3.64265800	-0.62949400	0.38056900		
Н	2.94972600	1.15506300	1.22533000		
С	4.83453300	-1.48089700	0.40698300		
Н	5.56669500	-1.08391900	-0.29958200		
Н	5.26015300	-1.46993900	1.41245300		
н	4.56561300	-2.49652700	0.12198300		

С	-3.56840500	-1.05555700	-0.67063800
н	-3.67826500	0.03247000	-0.70050100
Н	-3.56891500	-1.43930600	-1.69358800
С	-1.95053000	2.12424600	0.90561200
Н	-1.68560400	3.15914700	1.13530300
Н	-2.55631700	2.10939300	-0.00516000
С	-4.62363100	-1.71242000	0.18771800
Н	-5.60914100	-1.50832600	-0.23791900
Н	-4.47637600	-2.79466200	0.22065200
Н	-4.59662400	-1.31835200	1.20682100
С	-2.63504400	1.43292200	2.06107500
Н	-2.00775100	1.45708300	2.95556100
Н	-3.57448800	1.94621600	2.28063000
Н	-2.85606700	0.39192400	1.80996200

radii=bondi

Energy (SCF) = -973.27781476 a.u. Imaginary Freq. = 0

Conformer SSSS, ethanol

opt freq=noraman

31+g(d,p)scrf=(iefpcm,solvent=ethanol,read)

m062x/6-

geom=connectivity

01

С	-1.23371900	-0.76164900	1.27596000
С	0.26261400	-0.45701000	1.49158400
С	1.13597100	-0.23375100	0.35926000
С	0.65580900	-0.02046600	-0.99390600
С	-0.67655500	0.73054600	-1.22316400
0	-1.44434600	-1.42707400	0.14721700
0	-2.08678000	-0.46610900	2.07970500
0	1.25194300	-0.36640500	-2.00718400
0	-1.00704800	1.48547600	-0.18445500
0	0.64416700	-0.49441200	2.65951400
0	-1.30015100	0.65500600	-2.25605000
Н	3.43249200	0.51996200	-2.02678800
С	2.50456600	-0.45742900	0.64763600
Н	4.43661900	1.57170800	-0.98675700
С	3.51526500	0.99164700	-1.04524800
Н	2.72635800	-1.04573300	1.53578700
Ν	3.55811900	-0.01504200	0.01015300
Н	2.65762900	1.64673400	-0.88551500
С	4.89751700	-0.47653900	0.38350400
Н	5.37193600	-0.92624600	-0.49160800
Н	5.49017700	0.37794000	0.71648900
Н	4.82230500	-1.21616200	1.17860800
С	-2.24063600	2.24309700	-0.28235000
Н	-2.18194300	2.86920300	-1.17564700
Н	-3.06273700	1.53230500	-0.40031200
С	-2.36441800	3.05559400	0.98495200
Н	-1.52695900	3.75096400	1.08141800
Н	-3.29244200	3.63144500	0.95294300
н	-2.38904800	2.40277600	1.86100200
С	-2.81819800	-1.76398800	-0.17713900
Н	-3.24623100	-2.29768800	0.67428500

н	-3.36268800	-0.82663800	-0.32212000
С	-2.78574200	-2.60515500	-1.43129100
Н	-2.22995500	-3.53050200	-1.26125600
Н	-3.80874200	-2.86122300	-1.71733500
Н	-2.32071900	-2.05478200	-2.25302700

radii=bondi

Energy (SCF) = -973.27712525 a.u. Imaginary Freq. = 0

S 10

ESI(+)-MS for the reaction of 2 with phenylhydrazine in ethanol at 0°C after 3 min of reaction.

ESI(+)-MS/MS of the ion of m/z 362.1708.

ESI(+)-MS/MS of the ion of m/z 335.1285.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

S 30

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

S 42

f1 (ppm)

S 44

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

S 54

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015 4.65 - 9.94 - 8.63 CONHNH₂ 1 -7.81 \cap 7 (DMSO-d_{6,} 22 °C, 300 MHz) 7.8 7.5 7.7 7.6 7.4 ppm ſ 0.88-[1.00 9.00-1.95 0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 ppm 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 4.0 0.0 -0

S 62

Г

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

